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APPENDIX A

SENSITIVITY ANALYSIS: HOW DO WE KNOW WHAT’S IMPORTANT?

A.0 INTRODUCTION

Sensitivity analysis, as it is applied to risk assessment, is any systematic, common sense
technique used to understand how risk estimates and, in particular, risk-based decisions, are dependent on
variability and uncertainty in the factors contributing to risk.  In short, sensitivity analysis identifies what
is “driving” the risk estimates.  It is used in both point estimate and probabilistic approaches to identify
and rank important sources of variability as well as important sources of uncertainty.  The quantitative
information provided by sensitivity analysis is important for guiding the complexity of the analysis and
communicating important results (see Chapter 6).  As such, sensitivity analysis plays a central role in the
tiered process for PRA (see Chapter 2).  This Appendix focuses on a set of graphical and statistical
techniques that can be used to determine which variables in the risk model contribute most to the
variation in estimates of risk.  This variation in risk could represent variability, uncertainty, or both,
depending on the type of risk model and characterization of input variables. 

There is a wide array of analytical methods that may be referred to as sensitivity analysis, some of
which are very simple and intuitive.  For example, a risk assessor may have two comparable studies from
which to estimate a reasonable maximum exposure (RME) for childhood soil ingestion.  One approach to
evaluating this uncertainty would be to calculate the corresponding RME risk twice, each time using a
different plausible point estimate for soil ingestion rate.  Similarly, in a probabilistic model, there may be
uncertainty regarding the choice of a probability distribution.  For example, lognormal and gamma
distributions may be equally plausible for characterizing variability in an input variable.  A simple
exploratory approach would be to run separate Monte Carlo simulations with each distribution in order to
determine the effect that this particular source of uncertainty may have on risk estimates within the RME
range (90th to 99.9th percentile, see Chapter 1). 

 Sensitivity analysis can also involve more complex mathematical and statistical techniques such
as correlation and regression analysis to determine which factors in a risk model contribute most to the
variance in the risk estimate.  The complexity generally stems from the fact that multiple sources of
variability and uncertainty are influencing a risk estimate at the same time, and sources may not act
independently.  An input variable contributes significantly to the output risk distribution if it is both
highly variable and the variability propagates through the algebraic risk equation to the model output (i.e.,
risk).  Changes to the distribution of a variable with a high sensitivity could have a profound impact on
the risk estimate, whereas even large changes to the distribution of a low sensitivity variable may have a
minimal impact on the final result.  Information from sensitivity analysis can be important when trying to
determine where to focus additional resources.  The choice of technique(s) should be determined by the
information needs for risk management decision making.

This appendix presents guidance on both practical decision making and theoretical concepts
associated with the sensitivity analysis that are commonly applied in risk assessment.  An overview of the
type of information provided by sensitivity analysis is presented first, followed by guidance on how to
decide what method to use in each of the tiers.  A straightforward example of applications of Tier 1 and
Tier 2 sensitivity analysis methods is shown, followed by a more detailed discussion of the theory and
equations associated with the different methods.
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EXHIBIT A-1

DEFINITIONS FOR APPENDIX A

Continuous Variables - A random variable that can assume any value within an interval of real numbers (e.g., body
weight).

Correlation - A quantitative expression of the statistical association between two variables; usually represented by the
Pearson correlation coefficient for linear models, and the Spearman rank correlation coefficient (see below) for
nonlinear models.

Discrete Variables - A random variable that can assume any value within a finite set of values (e.g., number of visits to a
site in one year) or at most a countably infinite set of values, meaning that you can count observations, but there is no
defined upper limit.  An example of countably infinite would be the number of dust particles in a volume of air (a
Poisson distribution), whereas uncountably infinite would be the number of points in a line segment.

Local Sensitivity Analysis - Evaluation of the model sensitivity at some nominal points within the range of values of input
variable(s).

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - The process of repeatedly sampling from probability
distributions to derive a distribution of outcomes.  MCA is one of several techniques that may be used in PRA.

Multiple Regression Analysis - A statistical method that describes the extent, direction, and strength of the relationship
between several (usually continuous) independent variables (e.g., exposure duration, ingestion rate) and a single
continuous dependent variable (e.g., risk).

Nonparametric Tests - Statistical tests that do not require assumptions about the form of the population probability
distribution.

Range Sensitivity Analysis - Evaluation of the model sensitivity across the entire range of values of the input variable(s).
Rank - If a set of values is sorted in ascending order (smallest to largest), the rank corresponds to the relative position of a

number in the sequence.  For example, the set {7, 5, 9, 12} when sorted gives the following sequence {5, 7, 9, 12}
with ranks ranging from 1 to 4 (i.e., rank of 5 is 1, rank of 7 is 2, rank of 9 is 3, and rank of 12 is 4). 

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the values
of the model’s input(s).  Sensitivity analysis attempts to provide a ranking of the model inputs based on their relative
contributions to model output variability and uncertainty.  Common metrics of sensitivity include:
< Pearson Correlation Coefficient - A statistic r that measures the strength and direction of linear association

between the values of two quantitative variables.  The square of the coefficient (r2) is the fraction of the variance
of one variable that is explained by least-squares regression on the other variable, also called the coefficient of
determination..

< Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called elasticity.
< Sensitivity Score - A sensitivity ratio that is weighted by some characteristic of the input variable (e.g., variance,

coefficient of variation, range).
< Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic r that measures

the strength and direction of association between the ranks of the values (not the values themselves) of two
quantitative variables.  See Pearson (above) for r2.
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EXHIBIT A-2

UTILITY OF SENSITIVITY ANALYSIS

C Decision making with the tiered approach-
e.g., After quantifying parameter uncertainty,
we are 95 percent confident that the RME risk
is below the risk level of concern— no further
analysis is needed.  Also—selection of a beta
distribution over a lognormal distribution for
ingestion rate changes the 95th percentile of
the risk distribution by a factor of 10—further
evaluation may be needed.

C Resource allocation - e.g., Two of the 10
exposure variables contribute 90 percent of
the variability in the risk estimate.

C Risk communication - e.g., For input
variable X, if we were to use a distribution
based on site-specific data instead of a
national survey, we would expect a minimal
change in the RME risk estimate.

A.1.0 UTILITY OF SENSITIVITY ANALYSIS

As highlighted in Exhibit A-2, sensitivity
analysis can provide valuable information for both risk
assessors and risk management decision makers
throughout the tiered process for PRA.  By
highlighting important sources of variability and
uncertainty in the risk assessment, sensitivity analysis
is generally an important component of the overall
uncertainty analysis.  For example, methods that
quantify parameter uncertainty and model uncertainty
may yield different estimates of the RME risk.  This
information can be used to guide the tiered process by
supporting decisions to conduct additional analyses or
prioritize resource allocations for additional data
collection efforts.  Results of sensitivity analysis can
also facilitate the risk communication process by
focusing discussions on the important features of the
risk assessment (e.g., constraints of available data,
state of knowledge, significant scientific issues, and
significant policy choices that were made when
alternative interpretations of data existed). 

Decision Making with the Tiered Approach

In general, the type of information provided by a sensitivity analysis will vary with each tier of a
PRA.  Table A-1 provides an overview of the methods that may be applied in each tier based on the type
of information needed.  In Tier 1, sensitivity analysis typically involves changing one or more input
variables or assumptions and evaluating the corresponding changes in the risk estimates.  Ideally, the
results for Tier 1 would be useful in deciding which exposure pathways, variables, and assumptions are
carried forward for further consideration in subsequent tiers of analysis.  By identifying the variables that
are most important in determining risk, one can also decide whether point estimates, rather than
probability distribution functions (PDFs), can be used with little consequence to the model output.  This
information is important not only for designing 1-D MCA models of variability, but also for designing
more complex analyses of uncertainty discussed in Appendix D (e.g., 2-D MCA models, geostatistical
analysis, Bayesian analysis).  Section A.2.2 provides an overview of the Tier 1 methods and some
insights regarding their limitations.  Methods associated with Monte Carlo simulations used in Tiers 2 and
3 can take advantage of the ability to vary multiple inputs simultaneously and account for correlations. 
Sections A.2.3 and A.3 provide an overview of the sensitivity analysis methods that can be applied in a
probabilistic analysis.
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Table A-1.  Overview of Sensitivity Analysis Methods Applicable in Tiers 1, 2, and 3 of a PRA.

Tier Goal SA Method(s) What to Look For Rationale

1 Quantify contributions of
each exposure pathway to
risk, identify major and
minor pathways

Calculate % of total risk
from each exposure
pathway

Exposure pathways that
contribute a very small
percentage (e.g., < 5%) to
total risk

Good preliminary step in Tier 1 for reducing the number of
exposure variables to focus on in subsequent tiers. 

Exposure variables that
appear in multiple
exposure pathways

Risk estimates are likely to be more sensitive to variables that
appear in multiple exposure pathways.

1 Identify the form of the
dose equation for key
pathways 

Inspection Equation is multiplicative
or additive

SR values can be determined with minimal effort (see
Table A-3).  For multiplicative equations, SR=1.0 for all
variables in the numerator, and SR is a function of the percent
change for all variables in the denominator. 

Equation contains
variables with exponents
(e.g., powers, square
roots)

Output is likely to be more sensitive to variables with
exponents greater than 1.0.

1 Quantify contributions of
each exposure variable to
total risk, identify major
and minor variables

Sensitivity Ratio (SR),
unweighted

SR = 1.0, or SR is the
same for multiple
variables

It’s likely that this is a multiplicative equation (see above), and
the SR approach will not be effective at discriminating among
relative contributions.  Explore sensitivity further with other
methods.

SR … 1.0 SR may vary as a function of the % change in the input
variable.  In this situation, it can be informative to explore
small deviations (± 5%) and large deviations (min, max) in the
input variables.  

SR < 1.0 Implies an inverse relationship between the input and output
variables (e.g., inputs in the denominator of a risk equation).
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SR=0 Variable probably appears in both the numerator and
denominator and, therefore, cancels out of the risk equation. 
Examples include exposure duration (ED) in noncancer risk
equations, and body weight (BW) if ingestion rate is expressed
as a function of body weight. 

1 (cont’d) Quantify
contributions of each
exposure variable to total
risk

Sensitivity Ratio (SR),
weighted—also called
Sensitivity Score

Differences in SR based
on the weighting factor

A more informative approach than unweighted SR value for
those variables that have sufficient information to define a
weighting factor (e.g., coefficient of variation or range).

2 Quantify relative
contributions of exposure
pathways to risk

1-D MCA for variability
or uncertainty, with
outputs specifying %
contribution of exposure
pathways

Compare mean with high-
and low-end percentiles
of % contribution to risk

The % contribution of each exposure pathway will vary as a
function of the variability (or uncertainty) in the inputs;
exposure pathways that appear to be relatively minor
contributors on average, or from Tier 1 assessment, may in fact
be a major contributor to risk under certain exposure scenarios. 
The likelihood that a pathway is nonnegligible (e.g., > 5%) can
be useful information for risk managers.

2 Quantify relative
contributions of exposure
variables to risk

1-D MCA for variability
or uncertainty, Graphical
analysis— scatterplots
of inputs and output

Nonlinear relationship Easy and intuitive approach that may identify relationships that
other methods could miss.  May suggest transformations of
input or output variables (e.g., logarithms, power
transformations) that would improve correlation and regression
analyses.

1-D MCA, Correlation
Analysis using Pearson
and /or Spearman Rank 

Very high or low
correlation coefficients

Differences between
relative rankings based on
Pearson and Spearman

Easy to implement with commercial software; rank orders the
variables based on the average contribution to variance. 
Differences in magnitude of coefficients are expected between
Pearson and Spearman rank approaches, but relative order of
importance is likely to be the same.
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1-D MCA, Multiple
Linear Regression
Analysis (e.g., stepwise)

Very high or low
regression coefficients

R2 and adjusted R2 for
total model

Easy to implement with commercial software; gives
contribution to reduction in residual sum of squares (RSS)

For risk equations with large sets of input variables, a small
subset of inputs may be able to explain the majority of the
variance.

2 Quantify relative
contributions of exposure
variables to RME risk
range

1-D MCA; same as
previous step, but for
subset of risk
distribution (e.g., > 90th

percentile)

Difference in relative
contributions for entire
risk distribution and the
RME range of the risk
distribution

Variables may contribute differently to the high-end of the risk
distribution, especially if the input variables are highly skewed. 
This situation would warrant a closer look at the assumptions
regarding the estimate of the variance, differences in the upper
tail (high-end percentiles) for alternative choices of probability
distributions, and assumptions associated with truncation limits.

1-D MCA, Goodness-of-
fit, K-S or Chi-square;
Sort output as above;
perform GoF on input
distribution only,
comparing subset of
input values
corresponding with
high-end risk to subset
corresponding with
remainder of risk
distribution 

GoF result—rejection of
null (distributions are the
same) suggests the
variable may be an
important contributing
factor to the RME risk
estimate

A second method for identifying variables that contribute
differently at the high-end of the risk distribution.  GoF test
results should be interpreted with caution because a Monte
Carlo simulation will generally yield large sample sizes (e.g.,
n=5,000 iterations), which is more likely to result in a positive
GoF test (i.e., rejection of the null).

3 Quantify relative
contributions of exposure
pathways and variables to
variability and
uncertainty in risk

2-D MCA, same
sensitivity analysis
methods as Tier 2

For variability, evaluate
inner loop values; for
parameter uncertainty,
evaluate outer loop values

The results of a sensitivity analysis depend on the question that
is being asked about the risk estimate—are we interested in
variability or uncertainty?  The major sources of variability in
risk may point to a different set of input variables than the
major sources of uncertainty in risk.
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Resource Allocation

Decisions regarding allocation of future resources and data collection efforts to reduce lack of
knowledge generally should take into consideration the most influential input factors in the model, and
the cost of gaining new information about the factors.  Sensitivity analysis is a key feature of determining
the expected value of information (EVOI) (see Appendix D).  Once a sensitivity analysis is used to
identify an input variable as being important, the source of its variability generally should be determined. 
If an input factor has a significant uncertainty component, further research and/or data collection can be
conducted to reduce this uncertainty.  Reducing major sources of uncertainty, such as the most relevant
probability model for variability or the parameter estimates for the model, will generally improve
confidence in the model output, such as the estimated 95th percentile of the risk distribution.  An input
factor may contribute little to the variability in risk, but greatly to the uncertainty in risk (e.g., the
concentration term).  Likewise, a variable may contribute greatly to the variability in risk, but, because
the data are from a well characterized population, the uncertainty is relatively low (e.g., adult tap water
ingestion rate).

An example of the output from a 2-D MCA of uncertainty and variability (see Appendix D) is
shown in Figure A-1.  Assume for this example that the decision makers choose the 95th percentile risk as
the RME risk, and that a sensitivity analysis is run to identify and quantitatively rank the important
source(s) of parameter uncertainty.  The bar chart (top panel) in Figure A-1 indicates that the mean soil
concentration contributes most to the uncertainty in the 95th percentile risk estimate.  In addition, the
mean exposure frequency is a greater source of uncertainty than the standard deviation exposure
frequency.  Since both the sample size and variance impact the magnitude of the confidence limits for an
arithmetic mean soil concentration, one way to reduce the confidence limits (i.e., the uncertainty) would
be to collect additional soil samples.  As shown by the box-and-whisker plots (bottom panel) in
Figure A-1, increasing the sample size (from n=25 to n=50) reduced the 90% confidence limits for the
95th percentile risk to below 1E-05, assuming the additional observations support the same estimate of the
mean and standard deviation as the original sample.

Although the uncertainty in a risk estimate can be reduced by further data collection if the
sensitive input distribution represents uncertainty, this is not necessarily true for input distributions that
represent variability.  For example, variability in the distribution of body weights can be better
characterized with additional data, but the coefficient of variation (i.e., standard deviation divided by the
mean) will not in general be reduced.

Risk Communication

Even if additional data are not collected to reduce uncertainty, identifying the exposure factors
that contribute most to risk or hazard may be useful for risk communication.  For example, assume that
the input for exposure frequency has the strongest effect on the risk estimate for a future recreational open
space.  Further examination of this exposure variable reveals that the wide spread (i.e., variance) of the
PDF is a result of multiple users (e.g., mountain bikers, hikers, individuals who bring picnics, etc.) of the
open space who may spend very different amounts of time recreating.  As a result of this analysis, the
decision makers and community may decide to focus remediation efforts on protecting the high-risk
subpopulation that is expected to spend the most time in the open space.

After determining which contaminants, media, and exposure pathways to carry into a PRA,
numerical experiments generally should be performed to determine the sensitivity of the output to various
distributions and parameter estimates that may be supported by the available information.  Variables that
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do not strongly affect the risk estimates may be characterized with point estimates without significantly
altering the risk estimates.  This guidance document does not recommend a quantitative metric or rule of
thumb for determining when a variable strongly affects the output; this would generally be determined on
a case-by-case basis.  A qualitative or quantitative analysis may be used depending on the complexity of
the risk assessment at this point.  For example, incidental ingestion of soil by children is often an
influential factor in determining risk from soil, a factor recognized by risk assessors.  This recognition is a
de facto informal sensitivity analysis.  An array of quantitative techniques is also available, ranging from
something as simple as comparing the range of possible values (i.e., maximum-minimum) for each
variable, to more complex statistical methods such as multiple regression analysis.  Several of these
methods are discussed in more detail in this appendix.

Often, sufficient information is available to characterize a PDF for a minor variable without
significant effort.  This situation raises a question of whether the variable should be characterized with a
point estimate or a PDF.  The results of sensitivity analysis should be viewed as supplemental
information, rather than an absolute rule for determining when to use a PDF.  There are at least two issues
to consider related to risk communication.  First, the risk communication process may be facilitated by
narrowing the focus of the evaluation to the key factors.  More attention can be given to the discussion of
key variables quantified by PDFs by describing the minor variables with point estimates.  However, the
decision to use a point estimate should be balanced by considering a second issue regarding perception
and trust.  There may be a concern that by reducing sources of variability to point estimates, there would
be a reduction (however small) in the variability in risk, especially if multiple small sources of variability
add up to a nonnegligible contribution.  To address these concerns, it may be prudent to leave the PDFs in
the calculations despite the results of a sensitivity analysis.
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Figure A-1.  Results of 2-D MCA in which parameters of input distributions describing variability are assumed
to be random values.  Results of a sensitivity analysis (top graph) suggest that more than 50% of the uncertainty
in the 95th percentile of the risk distribution is due to uncertainty in the arithmetic mean concentration in soil. 
The bottom graph gives box-and-whisker plots for the 95th percentile of the risk distribution associated with
Monte Carlo simulations using different sample sizes (n=25 and n=50).  For this example, the whiskers represent
the 5th and 95th percentiles of the distribution for uncertainty, otherwise described as the 90% confidence interval
(CI).  For n=25, the 90% CI is [1.0E-06, 2.2E-05]; for n=50, the 90% CI is reduced to [1.2E-06, 9.5E-06].  While
increasing n did not change the 50th percentile of the uncertainty distribution, it did provide greater confidence
that the 95th percentile risk is below 1x10-5.
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EXHIBIT A-3

SOME KEY INDICES OF SENSITIVITY ANALYSIS 

C Relative contribution of exposure pathways
C Inspection of risk equation
C Sensitivity ratios (i.e., elasticity)
C Sensitivity scores (i.e., weighted sensitivity

ratios)
C Graphical techniques with results of Monte

Carlo simulations (e.g., scatter plots)
C Correlation coefficient (or coefficient of

determination, r2) (e.g., Pearson product
moment, Spearman rank)

C Normalized multiple regression coefficient
C Goodness-of-fit test for subsets of the risk

distribution

A.2.0 COMMON METHODS OF SENSITIVITY ANALYSIS

Of the numerous approaches to sensitivity
analysis that are available (see Exhibit A-3), no single
approach will serve as the best analysis for all
modeling efforts.  Often, it will make sense to apply
multiple approaches.  The best choice(s) for a
particular situation will depend on a number of
factors, including the nature and complexity of the
model and the resources available.  A brief description
of the more common approaches is provided in this
appendix.  Sensitivity analysis need not be limited to
the methods discussed in this guidance, which focuses
on the more common approaches.  A large body of
scientific literature on various other methods is
available (e.g., Iman et al., 1988, 1991; Morgan and
Henrion, 1990; Saltelli and Marivort, 1990; Rose et
al., 1991; Merz, Small, and Fischbeck, 1992;
Shevenell and Hoffman 1993; Hamby, 1994; U.S.
EPA, 1997).  Any method used, however, generally
should be documented clearly and concisely.  This
includes providing all information needed by a third
party to repeat the procedure and corroborate the
results.  Relevant information might include the following: exposure pathways and equations; a table with
the input variables with point estimates, probability distributions and parameters; and tables or graphs
giving the results of the sensitivity analysis and description of the method used.  A hypothetical example
is presented in this appendix to illustrate how to apply and present the results of selected approaches to
sensitivity analysis.

Hypothetical Example of a Noncancer Risk Equation

To illustrate the application of sensitivity analysis concepts to Tier 1 and Tier 2, a hypothetical
risk assessment is presented based on the general equation for Hazard Index (HI) given by Equation A-1. 
Note that HI is equal to the sum of the chemical-specific Hazard Quotient (HQ) values, so technically,
this example reflects exposures from a single chemical.

HI
C I AF EF ED

BW AT RfD
i i i=
× × × ×

×
×

1
Equation A-1

The terms in Equation A-1 can be defined as follows: concentration in the ith exposure medium (Ci),
ingestion or inhalation rate of the ith exposure medium (Ii), absorption fraction of chemical in the ith

exposure medium (AFi ), exposure duration (ED), exposure frequency (EF), body weight (BW), averaging
time (AT=ED x 365 days/year), and reference dose (RfD).  

For this example, HI is calculated as the sum of the exposures to adults from two exposure
pathways: tap water ingestion and soil ingestion.  Equation A-2 gives the equation for HI while Table A-2
gives the inputs for a point estimate assessment and a probabilistic assessment of variability.  
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HI C I AF C I AF EF ED
BW AT RfD

w w w s s s=
× × + × × × ×

×
×

(( ) ( )) 1
Equation A-2

Table A-2.  Point estimates and probability distributions for input variables used in the hypothetical example of HI
associated with occupational exposure via water and soil ingestion. 

Input Variable
in Equation A-2

Point Estimate Probability Distribution
Units

CTE RME Type Parameters

Concentration in Water (C_w) 40 40 point estimate 40 mg/L

Tap Water Ingestion Rate (I_w) 1.3 2.0 lognormal1 [1.3, 0.75] L/day

Absorption Fraction Water (AF_w) 0.30 0.50 beta2 [2.0, 3.0] unitless

Concentration in Soil (C_s) 90 90 point estimate 90 mg/kg

Soil Ingestion Rate (I_s) 0.05 0.10 uniform [0, 0.13] kg/day

Absorption Fraction Soil (AF_s) 0.10 0.30 beta2 [1.22 , 4.89] unitless

Exposure Frequency (EF) 250 350 triangular [180, 250, 350] days/yr

Exposure Duration (ED) 1 7 empirical3 see below years

Body Weight (BW) 75 75 lognormal1 [74.6, 12.2] kg

Averaging Time (AT) 365 2555 empirical4 ED x 365 days

RfDoral
5 0.5 0.5 point estimate 0.5 mg/kg-day

1Parameters of lognormal distribution are [arithmetic mean, standard deviation].
2Parameters of beta distribution are [alpha, beta], with range defined by min=0 and max=1.0.  Parameter conversions for
arithmetic mean and standard deviation are given in Table A-7.
3Parameters of empirical cumulative distribution function (ECDF) for ED ~ [min, max, {x}, {p}] = [0, 30, {0.08, 0.18, 0.30,
0.44, 0.61, 0.84, 1.17, 1.72, 3.1, 6.77, 14.15, 23.94}, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.99}], where x is the
array of values and p is the array of corresponding cumulative probabilities.
4AT=ED x 365 for noncarcinogenic risks (Hazard Index).
5For simplicity, RfDoral is assumed to be applicable to the ingestion of the chemical in both water and soil.

A.2.1 TIER 1 APPROACHES

Approaches for sensitivity analysis in Tier 1 of a PRA are limited to calculations that are based
on changing point estimates.  They are generally easy to perform and to communicate.  As given by Table
A-1, goals for the sensitivity analysis in Tier 1 include quantifying the relative contributions of the
exposure pathways, identifying potential nonlinear relationships that may exist between input variables
and the risk estimate, and rank ordering the relative contribution of exposure variables to variability or
uncertainty in the risk estimate.  This last goal may be the most difficult to achieve due to the limitations
associated with the point estimate methodology.  Methods are applied to the hypothetical example
presented above (Section A.2.0) in order to demonstrate the inherent limitations of the Tier 1 approaches
in some situations.
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A.2.1.1 PERCENTAGE CONTRIBUTION OF EXPOSURE PATHWAYS TO TOTAL RISK

For cancer and noncancer risk assessments central tendency exposure (CTE) and RME risk is
typically calculated as the sum of risks from multiple exposure pathways.  Risks may be dominated by
one or two exposure pathways, which can be determined through a simple calculation as shown below. 
The relative contributions of exposure pathways are likely to differ between the CTE risk and RME risk.

The point estimates in Table A-2 were applied to Equation A-2 to obtain CTE and RME point
estimates of HI.  Table A-3 gives the percent contributions of soil ingestion and tap water ingestion using
Equations A-3 and A-4.  Tap water ingestion contributes at least 90% to HI, and the total HI is greater
than 1.0 for both CTE and RME point estimates.  If 1.0 is the level of concern for HI, and a decision was
made to explore variability and uncertainty in a probabilistic analysis, this result might support
prioritizing the evaluation of data and assumptions associated with the tap water ingestion pathway. 

Table A-3.  Percent contribution of exposure pathways to HI for the example in Section A.2.

Exposure 
Pathway

CTE Point Estimate RME Point Estimate

HI  % of total2 HI % of total

Soil Ingestion 0.02 6 % 0.15 13 %

Tap Water Ingestion 0.28 94 % 1.02 87 %

 Total 0.30 100 % 1.17 100 %

1Equation A-3:  HItotal = HIsoil + HIwater
2Example using Equation A-4: % of total RME HI for soil ingestion = (0.15 / 1.17) x 100% = 13%.

Equation A-3HI HItotal i
i

n

=
=
∑

1

Equation A-4Percent Contribution
HI

HIi
i

total
= × 100%

In this example, the choice of CTE and RME point estimates reflects an effort to explore
variability in HI, rather than uncertainty.  Even if the concentration terms represent the upper confidence
limit on the mean (e.g., 95% UCL), the point estimates chosen to represent the CTE and RME for other
exposure variables reflect assumptions about the variability in exposures.  There is uncertainty that the
choices actually represent the central tendency and reasonable maximum exposures.  To explore this
uncertainty, alternative choices for CTE and RME may have been selected.  This type of exploration of
uncertainty in Tier 1 may also be viewed as a form of sensitivity analysis.  The percent contribution of
exposure pathways could be recalculated, and the sensitivity ratio approaches discussed below may also
be applied.
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A.2.1.2 INSPECTION OF RISK EQUATION

For many Superfund risk assessments, risk equations can be characterized as relatively simple
algebraic expressions involving addition, multiplication, and division of input variables.  The term
“product-quotient” model is often applied to describe equations such as Equation A-1.  For these risk
equations, the input variables that are likely to contribute most to the variability or uncertainty in risk can
be identified by inspection.  In addition, inspection of the risk equation can help to identify which
sensitivity analysis methods are unlikely to reveal the relative importance of the input variables.  This
concept is illustrated by comparing the results of the sensitivity ratio approach (Section A.2.1.3) with the
Tier 2 approaches (Section A.2.2) applied to the hypothetical example in Section A.2.0.

Some risk equations can be more complex, involving conditional probabilities, or expressions
with exponents (e.g., y=x2, or y=exp(1- x)).  In these cases, the Tier 1 sensitivity analysis methods may be
effective and highlighting the variables that contribute most to the risk estimates. 

A.2.1.3 SENSITIVITY RATIO (SR)

A method of sensitivity analysis applied in many different models in science, engineering, and
economics is the Sensitivity Ratio (SR), otherwise know as the elasticity equation.  The approach is easy
to understand and apply.  The ratio is equal to the percentage change in output (e.g., risk) divided by the
percentage change in input for a specific input variable, as shown in Equation A-5. 

Equation A-5SR

Y Y
Y

100%

X X
X

100%

2 1

1

2 1

1

=

−







 ×

−







 ×

where, Y1 = the baseline value of the output variable using baseline values of input variables
Y2 = the value of the output variable after changing the value of one input variable
X1 = the baseline point estimate for an input variable
X2 = the value of the input variable after changing X1

Risk estimates are considered most sensitive to input variables that yield the highest absolute value for
SR.  The basis for this equation can be understood by examining the fundamental concepts associated
with partial derivatives (see Section A.3.2).  In fact, SR is equivalent to the normalized partial derivative
(see Equation A-12).  

Sensitivity ratios can generally be grouped into two categories—local SR and range SR.  For the
local SR method, an input variable is varied by a small amount, usually ±5% of the nominal (default)
point estimate, and the corresponding change in the model output is observed.  For the range sensitivity
ratio method, an input variable is varied across the entire range (plausible minimum and maximum
values).  Usually, the results of local and range SR calculations are the same.  When the results differ, the
risk assessor can conclude that different exposure variables are driving risk near the high-end (i.e.,
extreme tails of the risk distribution) than at the central tendency region.
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Demonstration of the Limitations of SR Approach

Although SR is a relatively simple and intuitive approach, it does not provide useful information
under certain conditions for the more common risk equations.  To demonstrate the limitations, first
Equation A-5 is applied to the hypothetical example given in Section A.2.0.  The results are then
extended to a more general case of any of the more common risk models that involve the products of
terms (i.e., multiplicative model) or the sum of terms (i.e., additive model).

Table A-4 presents an example of the local SR and range SR approach applied to the set of RME
inputs given in Table A-2.  For the local SR, each input was increased by 5% (i.e., )=+5%), while for the
range SR, each input was increased by 50%.  Inputs for exposure frequency were truncated at the
maximum value of 365 days/year, which represents a 4.29% increase over the nominal RME value of
350 days/year.  

Table A-4.  Results of the Sensitivity Ratio (SR) approach applied to the hypothetical example of RME HI given in
Section A.2.0.  Includes both soil ingestion and tap water ingestion pathways.

Input Variable , X
in Equation A-21

Nominal 
RME

value (X1)

Local SR 
() = + 5.0%)

Range SR 
() = + 50% or max)

X2
) in HI

(%) SR X2
) in HI

(%) SR

Tap Water Ingestion Rate, I_w
(L/day)

2.0 2.1 4.35 0.87 3.0 43.5 0.87

Absorption Fraction Water,
AF_w (unitless)

0.50 0.525 4.35 0.87 0.75 43.5 0.87

Soil Ingestion Rate, I_s (kg/day) 0.100 0.105 0.65 0.13 0.150 6.5 0.13

Absorption Fraction Soil, AF_s
(unitless)

0.30 0.315 0.65 0.13 0.45 6.5 0.13

Exposure Frequency, EF 
(days/yr)

350 3652 4.29 1.00 3652 4.29 1.00

Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00

Body Weight, BW (kg) 75 78.75 - 4.46 - 0.89 112.5 - 33.33 - 0.67

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time
is a function of exposure duration.  RfD is a fixed point estimate.
2Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.

The following observations can be made from these results:
< In decreasing order of sensitivity:

Local SR () = 5%) rankings: EF > BW > I_w = AF_w > I_s = AF_s > ED 

Range SR () = 50%) rankings: EF > I_w = AF_w > BW > I_s = AF_s > ED

< EF is the most sensitive variable with an SR value of 1.0.  Since EF is a variable in the numerator
for both exposure pathways, this result is to be expected, as will be explained below.
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< ED yields an SR=0, suggesting it does not contribute to the HI estimate.  Upon closer inspection
of the risk equation, it is apparent that ED occurs in the numerator of Equation A-2, as well as in
the denominator (AT=ED x 365).  Thus, ED effectively cancels out of the product quotient model
and does not effect the estimate of HI.

< BW, the only variable in the denominator of the risk equation, is also the only variable to yield a
different SR value when comparing the local and range SR approaches.  Thus, BW is the only
variable for which SR depends on the percent change in the input ()).

< BW is the only negative SR value, indicating that HI and BW are inversely related.  This is true
in general for any variable in the denominator of a product quotient model.

< For variables unique to the water ingestion pathway (I_w, AF_w), SR=0.87.  Similarly, for
variables unique to the soil ingestion pathway (I_s, AF_s), SR=0.13  These SR values are exactly
the same as the percent contributions of the tap water ingestion pathway and soil ingestion
pathway to HI (see Table A-3).

Since tap water ingestion is the dominant pathway (i.e., 87% of RME HI), a reasonable strategy
for the Tier 1 sensitivity ratio approach might be to limit the subsequent probabilistic analysis in Tier 2 to
the tap water ingestion pathway; so that input variables unique to the soil ingestion pathway would be
characterized by point estimates.  For this relatively simple example, this would mean that soil ingestion
rate (I_s) and absorption fraction from soil (AF_s) would be described by point estimates instead of
PDFs.  The question to address would then become—Of the exposure variables in the tap water ingestion
pathway, which ones contribute most to HI?  A sensitivity ratio approach was applied to the tap water
ingestion pathway to address this question.  The results are presented in Table A-5.

Table A-5.  Results of the Sensitivity Ratio (SR) approach applied to the hypothetical example of RME HI given in
Section A.2.0.  Includes only tap water ingestion pathway.

Input Variable , X
in Equation A-21

Nominal 
RME

value (X1)

Local SR 
() = + 5.0%)

Range SR 
() = + 50% or max)

X2
) in HI

(%) SR X2
) in HI

(%) SR

Tap Water Ingestion Rate, I_w
(L/day)

2.0 2.1 5.0 1.00 3.0 50 1.00

Absorption Fraction Water,
AF_w (unitless)

0.50 0.525 5.0 1.00 0.75 50 1.00

Exposure Frequency, EF 
(days/yr)

350 3652 4.29 1.00 3652 4.29 1.00

Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00

Body Weight, BW (kg) 75 78.75 - 4.46 - 0.89 112.5 - 33.33 - 0.67

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time
is a function of exposure duration.  RfD is a fixed point estimate.
2Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.

The following observations can be made from these results:
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< In decreasing order of sensitivity:

Local SR () = 5%) rankings: I_w = AF_w = EF > BW > ED

Range SR () = 50%) rankings: I_w = AF_w = EF > BW > ED

< SR values for variables in the numerator (I_w, AF_w, and EF) are all equal to 1.0, so the SR
approach suggests that they contribute equally to the HI estimate.

< BW values are the same as in Table A-4.  They are negative, and the values change as a function
of the percent change in the nominal RME value ()).

Tables A-4 and A-5 suggest that the SR approach provides essentially the same information about
sensitivity as other Tier 1 methods.  Specifically, inspection of the risk equation reveals that ED does not
contribute to HI.  In addition, for pathway-specific variables in the numerator, like ingestion rates and
absorption fractions, SR values are equal to the percent contributions of the exposure pathways.  This
actually reflects the fact that each factor in the numerator of a multiplicative equation has an SR of 1.0.

The results of the SR approach applied to the example above can be generalized to all
multiplicative and additive risk equations, as discussed below.

Generalizing the Limitations of the SR Approach

In many cases, the general equation for SR (Equation A-5) will give values that can be
determined a priori, without doing many calculations.  To understand why this is true, it is useful to
simplify the algebraic expression given by Equation A-5.  Let ) equal the percentage change in the input
variable, X1.  For SR calculations, ) may be either positive or negative (e.g., ±5% for local SR; ±100% for
range SR), and the new value for the input variable (i.e., X2) is given by Equation A-6.

Equation A-6
X  X (X )

 X (1 )
2 1 1

1

= + ×
= × +

∆
∆

Therefore, the denominator in Equation A-5 reduces to ):

X X
X

X (1 ) X
X

(1 ) 1
1

2 1

1

1 1

1

−
=

+ −
=

+ −
=

∆ ∆
∆

and Equation A-5 reduces to Equation A-7: 

Equation A-7SR = ×
−









1 Y Y
Y

2 1

1∆

Equation A-7 can be used to evaluate SR for different types of exposure models in which the
intake equation is generally expressed as a simple algebraic combination of input variables.  Solutions to
SR calculations for input variables in both multiplicative and additive equations are given in Table A-6. 
For any such risk equation, the solution will fall into one of the five categories given by Exhibit A-4.
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EXHIBIT A-4

CATEGORIES OF SOLUTIONS FOR SENSITIVITY RATIOS OF 
MULTIPICATIVE OR ADDITIVE EQUATIONS 

Case 1 SR is a constant (e.g., 1.0).  SR is independent of the choice of nominal (default) values for
input variables and the choice of ).

Case 2 SR is a constant determined only by the nominal values for the input variables.  SR is
independent of the choice of ).

Case 3 SR is constant determined only by the choice of ).  SR is independent of the nominal
values for the input variables.

Case 4 SR is a function of both the nominal values for the input variables and the choice of ).
Case 5 SR is 0.  The variable does not contribute to the risk estimate.

Table A-6.  Examples of algebraic solutions to Sensitivity Ratio calculations for additive and multiplicative forms of
risk equations.1, 2  

Equation Type
(Output = Y, Inputs = A, B, C, D) SRA = SRB = SRC = SRD =

1) Additive in 
     Numerator Y

A B
C

=
+ A

A B+

B
A B+

−
+

1
1 ∆

NA3

2) Additive in 
    Denominator Y

A
C D

=
+

1.0 NA −
C

C (1 + ) + D∆
−

D
D (1 + ) + C∆

3) Multiplicative 
    in Numerator Y

A B
C

=
×

1.0 1.0 −
+

1
1 ∆

NA

4) Multiplicative 
   in Denominator Y

A
C D

=
×

1.0 NA −
+

1
1 ∆

−
+

1
1 ∆

1Sensitivity Ratio for input variable A for an equation that is additive in the numerator: SRA=A / (A + B).
2)=% change in input variable.  For example, ) for C=[(C2 - C1)/C1] x 100%, where C1=the original point estimate and C2=the
modified point estimate.  Similarly, C2=C1 (1 + )).
3NA=not applicable because the variable is not in the equation.
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The following observations can be made for the four forms of the risk equation, based on one of the five
cases described in Exhibit A-4:

(1) Additive in Numerator

< Case 2: SR values for variables in the numerator depend exclusively on the nominal point
estimates for all variables in the numerator.  The values are independent of the choice of percent
change in the inputs ()). 

< Case 3: SR values for variables in the denominator depend exclusively on ), and are negative
(i.e., inversely related to the output).  Also, the lower the choice for ), the higher the resulting SR
values.  Therefore, SR is somewhat arbitrary, especially for the range SR approach since input
variables may have different plausible minimum and maximum values.

(2) Additive in Denominator

< Case 1: SR values for variables in the numerator are always equal to 1.0.  Since they are
independent of the nominal values and ), there is no way to distinguish the relative contributions
to the output.

< Case 4: SR values for variables in the denominator are a function of both the nominal values of
variables in the denominator and ).

(3) Multiplicative in Numerator and (4) Multiplicative in Denominator

< Case 1: SR values for variables in the numerator are always equal to 1.0.  Since they are
independent of the nominal values and ), there is no way to distinguish the relative contributions
to the output.

< Case 3: SR values for variables in the denominator depend exclusively on the ), and are negative
(i.e., inversely related to the output).  Also, the lower the choice for ), the higher the resulting SR
values.  Therefore, SR is somewhat arbitrary, especially for range SR since input variables may
have different plausible minimum and maximum values.

These generalized results highlight a major limitation in the use of the SR approach for obtaining
information from sensitivity analysis.  For simple exposure models in which the relationship between
exposure and risk is linear (e.g., multiplicative), the ratio offers little information regarding the relative
contributions of each input variable to the risk estimate.  In many cases, all of the input variables will
have the same constant, either equal to 1.0 (in the case of a single exposure pathway) or equal to the
relative contributions of the exposure pathways.  For more complex models that combine additive,
multiplicative, and nonlinear relationships between inputs and outputs (e.g., environmental fate and
transport models, pharmacokinetic models), the ratio is likely to be an effective screening tool for
identifying potentially influential input variables and assumptions.

Another difficulty with the SR approach is that it generally requires an assumption that the input
variables are independent.  Two variables may actually be positively correlated (e.g., high values of X1
correspond with high values of X2) or negatively correlated (e.g., high values of X1 correspond with low
values of X2).  If input variables are correlated, holding the value for one variable fixed while allowing
the other to vary may produce misleading results, especially with the range sensitivity ratio approach.  For
example, it may not be realistic to hold body weight fixed at a central tendency while allowing skin
surface area to vary from the minimum to maximum values.  An improvement over the sensitivity ratio
approach would be to allow correlated input variables to vary simultaneously.
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A.2.1.4 SENSITIVITY SCORE

A variation on the sensitivity ratio approach may provide more information from a Tier 1
sensitivity analysis, but it requires that additional information be available for the input variables.  The
sensitivity score is the SR weighted by a normalized measure of the variability in an input variable (U.S.
EPA, 1999).  Examples of normalized measures of variability include the coefficient of variation (i.e.,
standard deviation divided by the mean) and the normalized range (i.e., range divided by the mean), as
given by Equation A-8.

Equation A-8Sensitivity Score SR or SR= × ×
−σ

µ µ
(max min)

By normalizing the measure of variability (i.e., dividing by the mean), this method effectively weights the
ratios in a manner that is independent of the units of the input variable, and provides a more robust
method of ranking contributions to the risk estimates than the SR alone.  This approach does require that
the coefficient of variation or range can be calculated for each variable.  Tables A-7 and A-8 present the
results of the sensitivity scores based on the CV applied to the hypothetical example from Section A.2.0.

Table A-7.  Calculation of coefficient of variation (CV = SD / Mean) for the hypothetical example of RME HI given
in Section A.2.0. 

Input Variable , X
in Equation A-21 Probability Distribution2 Mean3 SD3 CV =

SD/Mean

Tap Water Ingestion Rate, I_w (L/day) lognormal (1.3, 0.75) 1.3 0.75 0.58

Absorption Fraction, Water, AF_w
(unitless)

beta (2.0, 3.0) 0.4 0.2 0.50

Soil Ingestion Rate, I_s (kg/day) uniform (0, 0.13) 0.065 0.038 0.582

Absorption Fraction, Soil, AF_s (unitless) beta (1.22, 4.89) 0.20 0.15 0.75

Exposure Frequency, EF (days/yr) triangular (180, 250, 350) 260 35 0.133

Exposure Duration, ED (years) empirical CDF (see Table
A-2 for parameters)

1.75 3.86 2.21

Body Weight, BW (kg) lognormal (74.6, 12.2) 74.6 12.2 0.16
1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging
time is a function of exposure duration.  RfD is a fixed point estimate.
2Beta (a, b): mean=a / (a+b) and SD = ((a x b) / [(a + b)^2 x (a+b+1)])^0.5)
Uniform (min, max): mean = (min + max)/2 and SD = ((1/12)^0.5) x (max - min) = 0.289 x (max - min)
Triangular (min, mode, max): mean = (min + mode + max)/3 and SD = (1/18) x (min^2 + mode^2 + max^2 - min x max - min
x mode - mode x max)
Empirical CDF ({x}, {p}): mean and SD were estimated by Monte Carlo simulation.
3Mean=arithmetic mean; SD=arithmetic standard deviation
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Table A-8.  Results of the Sensitivity Score (Score) approach applied to the hypothetical example of RME HI given
in Section A.2.0.  Calculations for Sensitivity Ratio (SR) and Coefficient of Variation (CV) are given in Table A-4
and Table A-7, respectively. 

Input Variable , X
in Equation A-21

Nominal 
RME

value (X1)

CV
(Table A-7)

Local SR 
() = + 5%)

Range SR 
() = + 50%)

SR
(Table A-4 ) Score2 SR

(Table A-4 ) Score2

Tap Water Ingestion
Rate, I_w (L/day)

2.0 0.58 0.87 0.50 0.87 0.50

Absorption Fraction,
Water, AF_w
(unitless)

0.50 0.50 0.87 0.44 0.87 0.44

Soil Ingestion Rate,
I_s (kg/day)

0.100 0.58 0.13 0.06 0.13 0.06

Absorption Fraction,
Soil, AF_s (unitless)

0.30 0.75 0.13 0.10 0.13 0.10

Exposure Frequency,
EF (days/yr)

350 0.13 1.00 0.13 1.00 0.13

Exposure Duration,
ED (years)

7 2.21 0.00 0 0.00 0

Body Weight, BW
(kg)

75 0.16 - 0.89 - 0.14 - 0.67 - 0.11

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time
 is a function of exposure duration.  RfD is a fixed point estimate.
2Score=SR x CV (see Equation A-8)

The following observations can be made from these results:
< In decreasing order of sensitivity:

- Score based on local SR () = 5%): I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Score based on range SR () = 50%): I_w > AF_w > EF > BW > AF_s > IR_s > ED

< Compared with the SR approach alone in which sensitivity can only be expressed for exposure
pathways, the sensitivity score approach provides a measure of sensitivity for exposure variables
within each exposure pathway.

< Although ED has the highest CV, it continues to have no contribution to the HI.

< If Tier 1 sensitivity analysis is based on the sensitivity score, the highest ranked
variables are generally those with the highest CV in the exposure pathway that
contributes the most to the total risk (HI).  For this hypothetical example, I_w and
AF_w are the two highest ranked variables.
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A.2.2 TIER 2 APPROACHES

Approaches for sensitivity analysis in Tier 2 of a PRA utilize the results of Monte Carlo
simulations, which allows multiple input variables to vary simultaneously.  The methods are relatively
simple to perform with spreadsheets or commercial statistical software.  The results are generally easy to
communicate, although the details of the methodology are more complex than Tier 1 approaches.  As
given by Table A-1, goals for the sensitivity analysis in Tier 2 are the same as Tier 1:quantifying the
relative contributions of the exposure pathways, identifying potential nonlinear relationships that may
exist between input variables and the risk estimate, and rank ordering the relative contribution of
exposure variables to variability or uncertainty in the risk estimate.  In addition, since the output is a
distribution, Tier 2 sensitivity analysis methods can also utilize graphical techniques to observe nonlinear
relationships, as well as evaluate potential changes in relative importance of variables and assumptions
for risks in the RME risk range.  Methods are applied to the hypothetical example presented in
Section A.2.0 in order to demonstrate the advantages over the Tier 1 methods.

A.2.2.1 GRAPHICAL TECHNIQUES

Simple scatter plots of the simulated input and output (e.g., risk vs. exposure frequency, or risk
vs. arithmetic mean soil concentration) can be used to qualitatively and quantitatively evaluate influential
variables.  A “tight” best-fit line through the scatter plot, as indicated by the magnitude of the r2, suggests
that a variable may significantly influence the variance in risk.  Hypothetical scatter plots used to identify
sensitive and insensitive variables are shown in Figure A-2.  Another method for visualizing the
relationship between all of the inputs and outputs is to generate a scatterplot matrix (Helsel and Hirsch,
1992).  This graphic shows both histograms and scatter plots for all variables on the same page.

Figure A-3 illustrates scatter plots for the 1-D MCA simulations associated with the example
from Section A.2.0.  Based on the r2 values (i.e., coefficient of determination for simple linear regression
analysis), the relationship between HI and I_w is very strong (r2 = 0.47) while the relationship between HI
and I_s is very weak (r2 < 0.01), suggesting that HI is more sensitive to variability in I_w than I_s.  

 A.2.2.2  CORRELATION COEFFICIENTS

The variance in a risk estimate from a Monte Carlo simulation is due to the variance in the
probability distributions used in the risk equation.  It is commonly said that a Monte Carlo model
propagates sources of variability simultaneously in a risk equation.  Numerous statistical techniques,
known collectively as correlation analysis and regression analysis, can be applied to a linear equation to
estimate the relative change in the output of a Monte Carlo simulation based on changes in the input
variables.  Examples of metrics of sensitivity include the simple correlation coefficient, the rank
correlation coefficient, and a variety of coefficients from multiple regression techniques.  The underlying
assumptions associated with these approaches are discussed in greater detail in Section A.3.  As explained
in Section A.3.3.1, correlation coefficients and regression coefficients are based on different
interpretations of the input variables, but they can be calculated with similar equations.

When the output distribution is compared with the distribution for one input variable at a time,
two of the more common approaches are to calculate the Pearson product moment correlation and the
Spearman rank correlation.  Correlation analysis with one input variable will generally yield reasonable
results when the input variables are sampled independently in a Monte Carlo simulation.  Some statistical
packages offer the correlation coefficient as an index of sensitivity, so it is important to identify which
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coefficient is being calculated.  Crystal Ball® and @Risk can be used to calculate the Spearman rank
correlation, which tends to be more robust when the relationships between inputs and outputs are
nonlinear.  If the relationships are linear, such as with the product quotient models presented in this
appendix, the two metrics of correlation will yield similar rankings of input variables.  Rank correlation
coefficients shown in Crystal Ball® and @Risk are calculated by the standard method provided in most
statistics texts.  Crystal Ball® also indicates that sensitivity can be determined as contribution to variance. 
This is not the relative partial sum of squares techniques discussed in Section A.3.3.2 (Equation A-19). 
Instead, Crystal Ball® calculates the contribution to the variance by squaring the rank correlation
coefficients and normalizing them to 100%.  Many other commonly used commercial software packages
will perform Spearman rank correlation.  Pearson product moment correlations (r) can be calculated in
Microsoft Excel using the trendline feature in a scatter plot chart, or by using the function Correl(X array,
Y array), where X array corresponds with the Monte Carlo simulation of an input variable, and Y array
corresponds with the output of the simulation.

Figure A-4 illustrates results of the correlation analysis for the 1-D MCA simulations associated
with the example from Section A.2.0.  The graphics were generated using Crystal Ball® 2000.  The results
are summarized in Table A-9.  If the model output variable (e.g., HI) and input variable are highly
correlated, it means that the output is sensitive to that input variable.  By squaring the coefficient, the
results can be expressed in terms of the percentage contribution to variance in the output (Figure A-4, top
panel).  To determine if the correlation is positive or negative, the correlation coefficient should not be
squared (Figure A-4, bottom panel).  For risk equations, in general, variables in the numerator of the
equation (ingestion rate, absorption fraction, exposure frequency, etc.) will tend to be positively
correlated with risk, while variables in the denominator (body weight) will tend to be negatively
correlated with risk.  The greater the absolute value of the correlation coefficient, the stronger the
relationship. 

Table A-9.  Results of Tier 2 sensitivity analyses applied to hypothetical example in Section A.2.0: Pearson product
moment correlations and Spearman rank correlations.1

Exposure Variable

Product Moment
Correlation

Spearman Rank 
Correlation2

r r2 x 100% r r2 x 100% normalized 
r2 x 100%

Tap Water Ingestion Rate, I_w (L/day) 0.644 41.4 0.603 36.3 39.5

Absorption Fraction Water, AF_w (unitless) 0.583 34.0 0.666 44.4 48.3

Body Weight, BW (kg) - 0.216 4.7 - 0.229 5.2 5.7

Exposure Frequency, EF (days/yr) 0.174 3.0 0.167 2.8 3.0

Absorption Fraction Soil, AF_s (unitless) 0.109 1.2 0.149 2.2 2.4

Soil Ingestion Rate, I_s (g/day) 0.061 0.4 0.099 1.0 1.1

Exposure Duration, ED (years) 0.010 0.0 0.010 0.0 0.0

1Monte Carlo simulation using Crystal Ball® 2000, Latin Hypercube sampling, and 5000 iterations.
2Crystal Ball® 2000 output includes Spearman rank correlations, r, and normalized r2 values, calculated by dividing each r2 value
 by the sum of all the r2 values (i.e., 0.920 in this example).  Figure A-4 illustrates the r and normalized r2 values for the
Spearman rank correlation analysis.
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Figure A-2.  Scatterplots of simulated random values from a 1-D MCA of variability.  The output from the
model is a contaminant concentration in soil (C) that corresponds with a prescribed (fixed) level of risk for a
hypothetical population (based on Stern, 1994).  For each iteration of a 1-D MCA simulation, random values
were simultaneously selected for all model variables and  the corresponding concentration (C) was calculated. 
Inputs were simulated as independent random variables.  Scatterplots of 500 consecutive random values and
estimates of C are shown for two input variables: relative absorption fraction, RAF (top graph); and mass
fraction of dust as soil, F (bottom graph).  There is a moderate, indirect relationship between C and RAF
(r2=0.34), compared with the weak relationship between C and F (r2=0.02), suggesting that the model output (C)
is more sensitive to variability in RAF than F.
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Figure A-3.  Scatterplots of simulated random values from a 1-D MCA of variability for example in Section
A.2.0.  The output from the model is HI.  For each iteration of a 1-D MCA simulation, random values were
simultaneously selected for all model variables and  the corresponding HI was calculated.  Inputs were simulated
as independent random variables.  Scatterplots of 250 consecutive random values and estimates of HI are shown
for two input variables: soil ingestion rate, I_s (top graph); and tap water ingestion rate, I_w (bottom graph). 
There is a negligible relationship between HI and I_s (r2 < 0.01), compared with the strong relationship between
HI and I_w (r2=0.47), suggesting that the model output (HI) is more sensitive to variability in I_w than I_s.  Best-
fit lines were generated with the Simple Linear Regression in Microsoft Excel’s trendline option for scatterplots;
r2 values represent the coefficient of determination (see Section A.3).
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Target Forecast:  Total HI

AF_water 48.3%

I_water 39.5%

BW 5.7%

EF 3.0%

AF_soil 2.4%

I_soil 1.1%

ED 0.0%

0% 25% 50% 75% 100%

Measured by Contribution to Variance

Sensitivity Chart

Target Forecast:  Total HI

AF_water .67

I_water .60

BW -.23

EF .17

AF_soil .15

I_soil .10

ED .01

-1 -0.5 0 0.5 1

Measured by Rank Correlation

Sensitivity Chart

Figure A-4.  Top panel - bar graph showing the r2 values (square of Spearman rank correlation coefficient), a
metric for the dependence of HI on exposure factors based on 1-D MCA for variability.  Bottom panel - bar graph,
sometimes referred to as “tornado plot”, showing rank correlation coefficient.  This graph is effective for showing
both the relative magnitude and direction of influence (positive or negative) for each variable.  Abbreviations for
input variables are given in Table A-4.  In this example, the variable with the greatest effect on HI is the absorption
fraction in water (AF_w), followed by the water ingestion rate (I_w).  Concentration does not influence variability
because, in this example, long-term average concentration is characterized by a point estimate (i.e., 95% UCL),
rather than a probability distribution.  Exposure duration does not influence variability because variability in ED is
expressed in both the numerator (ED) and denominator (AT=ED x 365 for noncarcinogenic effects), and cancels
out.  Output was generated with Crystal Ball®, which calculates the contribution to variance by squaring the rank
correlation coefficient and normalizing to 100%.
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In this example, seven exposure variables are used to characterize variability in HI.  The
remaining variables in the risk equation (i.e., concentration terms, and RfD) are characterized by point
estimates.  Because point estimates do not vary in a Monte Carlo simulation, they do not contribute to the
variance in the output.  This result does not mean that concentration is an unimportant variable in the risk
assessment.  Concentration may still contribute greatly to the uncertainty in the risk estimate.  A
sensitivity analysis of parameter uncertainty in a risk equation can be explored using iterative simulations,
such as with 2-D MCA.

Results of the Pearson correlation and Spearman rank correlation give similar rankings of the
input variables, with absorption fraction of water (AF_w) and tap water ingestion rate (I_w) being the two
dominant exposure variables.  Pearson correlations suggest that I_w is the most sensitive variable
(r =0.644), whereas the highest Spearman rank correlation is for AF_w (r = 0.603).  This may reflect the
fact that I_w is characterized by an untruncated lognormal distribution, whereas AF_w is bounded
between 0 and 1.0.  The effect on the correlations of the occasional high-end value for I_w generated
from random sampling of the lognormal distribution will tend to be expressed by Pearson correlations,
but muted by the Spearman rank correlations.

A comparison of the Tier 1 and Tier 2 results is given below:

< Tier 1, Sensitivity Ratios:

- Local SR () = 5%) rankings: EF > BW > I_w = AF_w >  I_s = AF_s > ED 

- Range SR () = 50%) rankings: EF > I_w = AF_w > BW > I_s = AF_s > ED

< Tier 1, Sensitivity Scores:

- Score based on local SR () = 5%): I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Score based on range SR () = 50%): I_w > AF_w > EF > BW > AF_s > IR_s > ED

< Tier 2, Correlation Coefficients:

- Pearson: I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Spearman Rank: AF_w > I_w > EF > BW > AF_s > IR_s > ED

The Tier 1 sensitivity scores and Tier 2 correlation coefficients yield similar results, suggesting
that, if sufficient information is available to estimate the coefficient of variation in the input variables, a
Tier 1 analysis can help to focus efforts on the variables that contribute most to the variance in risk.  By
contrast, the Tier 1 sensitivity ratio approach suggested that EF was the most influential variable, when in
fact it contributes less than 5% to the variance in the HI.  These results suggest that Tier 1 sensitivity
ratios are best applied to identify dominant exposure pathways, rather than dominant exposure variables
in the risk equation.
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Y X X1 2= + Equation A-9

Y a X a X1 1 2 2= + Equation A-10

A.2.2.3 FOCUSING ON THE RME RANGE OF THE RISK DISTRIBUTION

Monte Carlo methods can also be used to determine the sensitivity over a subset of the output
distribution, such as the RME range (i.e., 90th to 99.9th percentiles).  For some exposure models, the
relative contribution of exposure variables may be different for the high-end exposed individuals than for
the entire range of exposures.  The general strategy for exploring sensitivity over subsets of risk estimates
is to first sort the distribution of simulated output values in ascending (or descending) order, and then
apply a sensitivity analysis to the subset of interest (e.g., > 90th percentile).  For the hypothetical example
presented in this appendix, there was no difference in the relative rankings of inputs in the RME range.

A.2.2.4 INSPECTION

With Monte Carlo analysis, the probability distributions assumed for the various input variables
are used to generate a sample of a large number of points.  Statistical methods are applied to this sample
to evaluate the influence of the inputs on the model output.  A number of different “indices” of sensitivity
can be derived from the simulated sample to quantify the influence of the inputs and identify the key
contributors.  Most of these are based on an assumption that the model output Y varies in a monotonic,
linear fashion with respect to various input variables (X1, X2, etc.).  For example, an estimate of average
daily intake (mg/kg-day) from multiple exposure pathways is linear with respect to the intake from each
pathway.  Since most risk models are linear with respect to the input variables, the output distribution
(particularly its upper percentiles) tends to be dictated by the input variables with the largest coefficient of
variation (CV), or the ratio of the standard deviation to the mean.  For example, Equation A-9 represents a
simple expression for intake rate as a function of random variables X1 and X2 :  

where X1 and X2 may represent dietary intake associated with prey species 1 and 2, respectively.  If the
same probability distribution was used to characterize X1 and X2, such as a lognormal distribution with an
arithmetic mean of 100 and standard deviation of 50 (i.e., CV=50/100=0.5), each variable would
contribute equally to variance in Y.  If, however, X2 was characterized by a lognormal distribution with
an arithmetic mean of 100 and standard deviation of 200 (i.e., CV=200/100=2.0), we would expect Y to
be more sensitive to X2.  That is, X2 would be a greater contributor to variance in Y.  

While the coefficient of variation may be a useful screening tool to develop a sense of the relative
contributions of the different input variables, a common exception is the case when X1 and X2 have
different scales.  For example, Equation A-10 is an extension of Equation A-9:

where a1 and a2 are constants that may represent the algebraic combination of point estimates for other
exposure variables.  If the means of X1 and X2 are equal, but a1 >> a2, then X1 would tend to be the
dominant contributor to variance, regardless of the CV for X2.  This concept was demonstrated by the
sensitivity score calculations given in Table A-8.  Water ingestion rate (I_w) and soil ingestion rate (I_s)
had the same CV (0.58), but I_w was the dominant variable because tap water ingestion contributed
approximately 90% to the HI.

The most influential random variables generally have the highest degrees of skewness or are
related to the output according to a power function (Cullen and Frey, 1999).  For example, Equation A-11
presents an extension of Equation A-10 in which there is a power relationship between X2 and Y.  In this



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Appendix A ~ December  31, 2001

Page A-28 

Y a X a X1 1 2 2= + θ Equation A-11

Partial Derivative Y
X

Y
X

= ≈
∂
∂

∆
∆

example, assume Y represents the total dietary intake rate of cadmium for muskrats, X1 and X2 represent
the dietary intake rate associated with prey species 1 and 2, respectively, a1 and a2 represent additional
point estimates in the equation, and 2 is the power exponent.  In general, for 2 > 1, the total dietary intake
rate (Y) will be more sensitive to the intake rate associated with species 2 (X2) than species 1.  Assume
(hypothetically) that the power relationship stems from the fact that there is a direct relationship between
availability of prey species X2 and chemical body burdens of prey species X2 because individuals that are
more accessible to the muskrat also happen to frequent areas of the site with higher concentrations.

 A.3.0 ADVANCED CONCEPTS IN SENSITIVITY ANALYSIS

This section provides additional information on the underlying principles of sensitivity analysis,
although it is not a comprehensive summary and is not intended to substitute for the numerous statistical
texts and journal articles on sensitivity analysis.  Section A.3.1 begins with a general framework for
relating model output to model input.  Section A.3.2 explains the sensitivity ratio approach and highlights
some of its limitations.  Section A.3.3 reviews some of the metrics reported by the commercial software
that report results of sensitivity analysis following Monte Carlo simulations (e.g., Crystal Ball®, @Risk). 
While statistical software for MCA provides convenient metrics for quantifying and ranking these
sources, it is strongly recommended that risk assessors and risk managers develop an understanding of the
underlying principles associated with these metrics.  

A.3.1 RELATING THE CHANGE IN RISK TO THE CHANGE IN INPUT VARIABLE X

For purposes of discussion, let Y denote a model output (e.g., risk) and suppose that it depends on
the input variable X.  In general, a risk assessment model may use any number of inputs; however, for
purposes of illustrating concepts, it is convenient to restrict this discussion to one variable.  The model
relates the output Y to values of X (i.e., x0, x1, , xn) based on the function expressed as Y=F(x).  The
sensitivity of Y to X can be interpreted as the slope of the tangent to the response surface F(X) at any point
xi.  This two-dimensional surface can be a simple straight line, or it may be very complex with changing
slopes as shown in Figure A-5a.  The sensitivity, therefore, may depend on both the value of X and the
amount of the change )x about that point.  This concept can be extended to two input variables, X1 and
X2, where the response is characterized by a three-dimensional surface.  The shape may be a simple plane
(Figure A-5c) or it may be very complex with many “hills” and “valleys” depending on the defining
function F(X1, X2).  In a typical risk assessment with ten or more variables, the surface can be very
complex, but the shape is likely to be dominated by a small subset of the input variables.

A sensitivity analysis based on a relatively small deviation about the point may be referred to as a
local sensitivity analysis, while a large deviation may be referred to as range sensitivity analysis.  In either
case, the objective is to evaluate the sensitivity at some nominal point (X1*, X2*) such as the point defined
by the mean or median of X1 and X2.  At any point, the sensitivity of the model output, Y* = F(X1*, X2*),
to one of the inputs (X1 or X2), is represented by the rate of change in Y per unit change in X.  This is the
slope of the surface at that nominal point in the direction of X and is expressed as MY/MXi, the partial
derivative of Y with respect to X.
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Figure A-5a.  Hypothetical 2-D response surface for Y given one input
variable: Y=F(X).  The sensitivity of Y with respect to X is calculated as the
slope at a specific point on the surface (x0, x1), or the partial derivative, MY/MXi.

If the function F(X1, X2) is known explicitly, it may be possible to determine the partial
derivatives analytically.  This is not a requirement, however, because an estimate can be obtained by
incrementing Xi by a small amount, )Xi, while keeping the other inputs fixed and reevaluating the model
output Y.  The resulting change in Y divided by )Xi will approximate MY/MXi at the nominal point.  In
practice, analytical solutions can be approximated using Monte Carlo techniques.  This information is
presented to highlight the fundamental concepts of sensitivity analysis.  The partial derivative, per se,
would typically not be one of the methods of sensitivity analysis used in a PRA.  However, all of the
approaches that are presented in this appendix are variations on this concept.

One drawback to using the partial derivative to quantify the influence of Xi is that the partial
derivative is influenced by the units of measurement of Xi.  For example, if the measurement scale for Xi
is changed from grams to milligrams, the partial derivative MY/MXi will change by a factor of 1,000. 
Therefore, it is necessary to normalize the partial derivative to remove the effects of units (see
Section A.3.2).

If the relationship between Y and all of the inputs is linear, then the response surface is a flat
plane and each of the partial derivatives at each point, (Xi, Y), will remain constant regardless of where the
point is in the surface (Figure A-5b).  In this case, it is a simple matter to determine the relative influence
that the various inputs have on the model output.  When the relationship is nonlinear, however, the
situation is more complex because the influence of a particular input may vary depending on the value of
that input.
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Figure A-5b.  Hypothetical 3-D response surface for Y given two input variables: Y = f(X1, X2).  The sensitivity
of Y with respect to Xi is calculated as the slope at a specific point on the surface, or the partial derivative,
MY/MXi.

Figure A-5c.  Hypothetical 3-D response surface when Y is a linear function of two input variables: Y=f(X1,
X2).  The slope (i.e., the partial derivative, MY/MXi) is constant for any point (Xi, Y) on the surface in the direction
of Xi.  In this case, MY/MX1=5 while MY/MX2=2.
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A.3.2 NORMALIZED PARTIAL DERIVATIVE

Classical sensitivity analysis methods use estimates of the partial derivatives of the model output
with respect to each variable.  For the purpose of evaluating the relative influence of the various input
variables on the model output at a single point, the normalized partial derivative provides a useful
index.

If the input variables are all discrete and take on a small number of values, then it is possible to
evaluate the influence of the various input variables at each of the points defined by considering all
possible combinations of the inputs.  Then the influence can be evaluated for each input by computing
normalized partial derivatives at each point.  This approach is limited to situations where the number of
inputs as well as the number of possible values for each input is relatively small; otherwise, the number of
combinations to be evaluated will be unmanageable.  Furthermore, when evaluating the influence at
different points on the input-output surface simultaneously, it is important to take into account the
probability associated with each of those points.  For example, the fact that a particular input has a large
influence on the model output at a particular point would be discounted if the probability associated with
that particular point is very low. 

A similar approach may be used to analyze inputs that are continuous variables if a few points
representing the range of values are selected.  For example, low, medium (or nominal), and high values
may be selected for each of the continuous input variables and then the relative influence of each of the
input variables can be computed as in the case of discrete inputs.  One limitation of this approach,
however, is that the continuous nature of the inputs makes it impossible to calculate an exact probability
for each of the points.  Generally, in a PRA, many if not all of the inputs will be random variables
described by probability distributions and it will be necessary to quantify the influence of each input, Xi,
over the entire range of Xi. 
 

An estimate of the partial derivative can be obtained by incrementing Xi by a small amount, say
)Xi while keeping the other inputs fixed and reevaluating the model output Y.  The resulting change in Y
divided by )Xi will approximate MY/MXi at the nominal point. 

    Partial Derivative = Y
X
∂
∂

≈
∆
∆

Y
X

As previously noted, one complication to using the partial derivative to quantify the influence of
Xi is that the partial derivative is influenced by the units of measurement of Xi.  One way this is
accomplished is to divide the partial derivative by the ratio of the nominal point estimates, Y* / Xi* (or
equivalently multiply by Xi* / Y*).  An approximation of the normalized partial derivative is given by
Equation A-12.
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EXHIBIT A-5

SIMPLIFYING ASSUMPTIONS IN 

REGRESSION ANALYSIS

C Y is a linear function of the unknown
coefficients ($i)

C Successive values of Y are uncorrelated 
C Variance of Y is constant for all values of

inputs (Xi)
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This is the same as the equation for calculating sensitivity ratios (Section A.2.1.3), or elasticity
(see Equation A-5).  As with the SR approach, the normalized partial derived can be weighted by
characteristics of the input variable (Section A.2.1.4).  One approach is to divide by the ratio of standard
deviations (FY/ FX), where FY is the standard deviation of Y and FX is the standard deviation of X.  This
method requires that the standard deviations be known, or that a suitable estimate can be obtained.

As previously noted, if the relationship between Y and all of the inputs is nonlinear, the influence
of a particular input may vary depending on the value of that input.  One approach to this problem is to
consider a range of values for the input and to examine the influence over that range.  If the input is
considered to be a random variable following some specified probability distribution, then it may be
desirable to look at the influence that the random input has on the model output across the distribution of
input values.  This can be accomplished with a Monte Carlo approach.  Another technique that addresses
nonlinearities is to calculate contributions to variance using input variables that are transformed (e.g.,
lognormal or power transformation).

A.3.3 REGRESSION ANALYSIS: R2, PEARSON R, AND PARTIAL CORRELATION COEFFICIENTS 

In order to understand R2, it is necessary to first understand simple and multiple linear regression. 
In regression analysis, we are interested in obtaining an equation that relates a dependent variable (Y) to
one or more independent variables (X):

Equation A-13Y X= + +β β ε0 1

where $0 and $1 are regression coefficients, and g is called a random error.  Equation A-13 is the general
equation for a simple linear regression, because there is only one Y and one X variable, and their
relationship can be described by a line with intercept $0 and slope $1.  

Note that linear regression refers to the linear relationship between parameters ($0, $1), not X and

Y.  Thus, the equation   isY X= + +β β ε0 1 1
2

considered linear.  Multiple linear regression involves
more than one X related to one Y

, while multivariate[ ]Y X X= + + ⋅ ⋅ ⋅β β β0 1 1 2

regression involves more than one Y to more than one
X.

The random error, g, represents the
difference between an observed Y value (calculated
from the observed input variables), and a Y value
predicted by the regression line (í).  It is also called
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the residual (i.e., g=y–í).  The random error takes into account all unpredictable and unknown factors that
are not included in the model.  Exhibit A-5 gives some of the simplifying assumptions that apply to
regression analysis.  Assumptions about g are that the random error has mean = 0 and constant variance,
and is uncorrelated among observations.  One method of finding the best regression line is to minimize
the residual sum of squares (i.e., least-squares method), also called the sum of squares due to error (SSE).

In terms of sensitivity analysis, we are interested in how much of the variation in Y can be
explained by the variation in X, and how much is unexplained (due to random error).  If a scatter plot of
paired observations (x, y) shows that our regression line intersects all of the observations exactly, then all
of the variation in Y is explained by X.  Another way of stating this is that the difference between the
mean output ( ) and an observed y (yi), or (yi - ), is equal to the difference between the mean outputy y
and a predicted y or ( ). $y y−

In general, the total deviation of yi from  is equal to the sum of the deviation due to they
regression line plus the deviation due to random error:

Equation A-14

( ) ( $ ) ( $ )

( ) ( $ ) ( $ )

y y y y y y

y y y y y y
SST SSE SSR

i i i i

i i i i

− = − + −

∑ − = ∑ − + ∑ −
= +

2 2 2

Thus, the total sum of squares (SST) equals the sum of squares due to error (SSE) plus the sum of
squares due to regression (SSR). 

A.3.3.1 CALCULATIONS OF R2 AND ADJUSTED R2

The R2 term is a measure of how well the regression line explains the variation in Y, or:

Equation A-15

R  SSR
SST

1 SSE
SST

R  
variation  explained by regression

total variation  in Y

2 = = −

=

where R2 is called the coefficient of multiple determination and R is called the multiple correlation
coefficient.  If R2=0.90 for a certain linear model, we could conclude that the input variables (X1, X2,...Xk)
explain 90% of the variation in the output variable (Y).  R2 reduces to the coefficient of determination r2

for simple linear regression when one independent variable (X) is in the regression model.  The sample
correlation coefficient, r, is a measure of the association between X and Y, and calculated by Equation
A-16.  It is also referred to as the Pearson product moment correlation coefficient.
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Equation A-16r
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In addition, r is an estimate of the unknown population parameter, D, defined by Equation A-17:

Equation A-17ρ
σ
σ σXY

XY

X Y
=

where FX and FY denote the population standard deviations of the random variables X and Y, and where
FXY is called the covariance between X and Y.  The covariance FXY is a population parameter describing
the average amount that two variables “covary”.  Thus, another way of thinking about a correlation
coefficient (R) is that it reflects the ratio of the covariance between two variables divided by the product
of their respective standard deviations; and the value always lies between -1 and +1.  @Risk and Crystal
Ball® provide both the R2 for the entire model, as well as the correlation coefficients for each input
variable (or regressor).  The higher the value of Ri for Xi, the more sensitive the output variable is to that
input variable. 

Although the calculations are the same, there is a subtle conceptual difference between the
coefficient of determination (r2) from regression, and the square of the correlation coefficient.  When
evaluating two variables (X, Y), the key is whether X is interpreted as a “fixed” quantity (i.e., an
explanatory variable), or a random variable just like Y.  In regression analysis, r2 measures how well the
regression line explains the variation in Y given a particular value for X (Equation A-15).  Correlation
requires that X be considered a random variable, typically having a bivariate normal distribution with Y
(see Appendix B). 

One artifact of regression analysis is that R2 increases as you add more and more input variables
to your model; however, the increased fit of the model due to one or more of the input variables may be
insignificant.  Sometimes an adjusted R2 is calculated to take into account the number of input variables
(called regressors) in the model (k) as well as the number of observations in the data set (n):

Equation A-18R n R
n kadj

2
21 1

1
=

− −
− −

( )

While R2 gives the proportion of the total variation of Y that is explained,  (Equation A-18) takesRadj
2

into account the degrees of freedom (df), and gives the proportion of the total variance of Y that is
explained (variance = variation /df); or stated simply,  is the R2 corrected for df, where df isRadj

2

described by [1 - k/(n-1)].

C If the relationship between an input variable and an output variable is strong, but nonlinear, the R2

statistic will be misleadingly low.
C If the means of the sampling data are used rather than the individual observations for each variable,

R2 will be misleadingly high.  This is because taking the mean of a sample reduces the fraction of the
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total variation due to random variation (see discussion of random error above).  This is an important
consideration when trying to interpret the results of regression analyses that incorporate data
averaged over different spatial scales (e.g., regression of PbB on soil lead concentrations taken at the
city block level may give an inflated R2 value if the sampling data are averaged over a larger spatial
scale, such as the census tract level).

A multiple regression analysis can also be performed to estimate the regression coefficients (see
Appendix A.3.3).  Each coefficient essentially represents an “average” value of the partial derivative
across the entire distribution of the input.  The regression coefficient, like the partial derivative, depends
on the units of measurement so, as in the case of the partial derivative, it must be normalized.  This can be
accomplished by multiplying the regression coefficient by the ratio of estimated standard deviations sy/sx.

A convenient way to carry out a sensitivity analysis is to perform a stepwise regression analysis. 
Some statistical software packages (e.g., SAS, SPSS) offer a variety of different approaches for this;
however, in general, they can be classified into two general categories: forward selection and backward
elimination.  In the forward selection, the inputs are added to the model one by one in the order of their
contribution.  In the backward elimination, all of the inputs are used in the model initially and then they
are dropped one by one, eliminating the least important input at each step.  A true stepwise procedure is a
variation on the forward selection approach where an input can drop out again once it has been selected
into the model if at some point other inputs enter the model that account for the same information.

A.3.3.2 RELATIVE PARTIAL SUM OF SQUARES (RPSS)

The relative partial sum of squares (RPSS) measures the sensitivity of the model output to each
of the input variables by partitioning the variance in the output attributable to each variable using multiple
regression techniques (Rose et al., 1991).  The RPSS is presented as a percentage reflecting the proportion
of influence a given variable has on risk.  The results of RPSS are intuitive and generally easy to
understand.

Briefly, the RPSS represents the percentage of the total sum of squares attributable to each of the
variables.  To calculate RPSS for variable Vi, the difference between the regression sum of squares (RSS)
for the full model and the regression sum of squares for the model with Vi missing (RSS-i) is divided by
the total sum of squares (TSS) and expressed as a percentage:

Equation A-19RPSS
RSS RSS

TSSi =
− −100 1( )

This procedure can be thought of as analogous to least squares linear regression, but performed in
the n-dimensional parameter space of the risk equation.  Since this approach depends on the adequacy of
the linear regression model between the output variable (e.g., risk) and all the variables, an additional
diagnostic is to check how close R2 is to 1.0.  For equations with more than three parameters (such as
those used in Superfund risk assessments), the computational overhead of this process is large and
requires specific computer programs.  The software program Crystal Ball® does not perform this
calculation, but it can be determined with most standard statistical software packages that perform
multiple regression. @Risk performs a calculation similar to this called multivariate stepwise regression
that yields correlation coefficients in lieu of percent contributions to output variance.
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A.3.3.3 SPEARMAN’S RANK CORRELATION COEFFICIENT (RHO)

The validity of using indices such as regression coefficients, correlation coefficients, and partial
correlation coefficients depends on the assumptions of the underlying linear model being met.  If there is
any doubt that a data set satisfies the model assumptions, a nonparametric measure of correlation based on
the rank orders of the inputs and associated outputs can be used.  The Spearman Rank correlation
coefficient is a nonparametric statistic; it measures an association between variables that are either count
data or data measured on an ordinal scale, as opposed to data measured on an interval or ratio scale.  An
example of an ordinal scale would be the ranking of sites based on their relative mean soil concentrations. 
For example, if there are four categories of soil contaminant concentrations, sites with the highest
concentrations may receive a rank of 1 while sites with lowest concentrations may receive a rank of 4. 
Ordinal scales indicate relative positions in an ordered series, not “how much” of a difference exists
between successive positions on a scale. 

To calculate the Spearman rank correlation coefficient, assign a rank to each of the input
variables (Xj) and output variables (Yk).  For each ranked pair (Xj, Yk), calculate the difference, d, between
the ranks.  For example, if the first observation for variable X has a ranking of 5 (relative to all of the
observations of X), and the corresponding value of Y has a ranking of 3 (relative to all of the observations
of Y), the difference (d) is equal to 5–3=2.  Spearman rho (rs) is calculated as:

Equation A-20r
d

n ns

i
i

n

= −
−

=
∑

1
6 2

1
3( )

Hence (-1 # rs # 1.0), and rs=-1 describes a perfect indirect or negative relationship between ranks
in the sense that if an X element increases, the corresponding Y element decreases.  Similarly, rs=0
suggests that there is no relationship between X and Y.

The Pearson product moment correlation coefficient is equal to the Spearman rank correlation
coefficient when interval/ratio values of the measured observations (X, Y) are replaced with their
respective ranks.
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APPENDIX B

SELECTION AND FITTING OF DISTRIBUTIONS

B.0 INTRODUCTION

An important step in Monte Carlo analysis (MCA) is to select the most appropriate distributions
to represent the factors that have a strong influence on the risk estimates.  This step in the development of
a Monte Carlo model can be very challenging and resource intensive. 

L Specifying probability distributions for all of the input variables and
parameters in a probabilistic risk assessment (PRA) will generally not be
necessary.

If the sensitivity analysis indicates that a particular input variable does not contribute significantly
to the overall variability and uncertainty, then this variable may be represented as a point estimate.  As
discussed in Appendix A, however, different approaches to sensitivity analysis may be applied
throughout the tiered approach (e.g., sensitivity ratios, correlation analysis), and the ability to reliably
identify variables as being minor or major can vary.  Sometimes it can be helpful to develop probability
distributions based on preliminary information that is available from Tier 1 in order to explore alternative
options for characterizing variability and uncertainty.  Likewise, sometimes the important “risk drivers”
are apparent, and resources can be allocated to fully characterize the variability and uncertainty in those
input variables.  Therefore, the process of selecting and fitting distributions may also be viewed as a
tiered approach.  This appendix reviews the methods available to select and fit distributions and provides
guidance on the process for determining appropriate choices depending on the information needed from
the assessment and the information available to define the input variables.

In PRA, there are some important distinctions in the terminology used to describe probability
distributions.  A probability density function (PDF), sometimes referred to as a probability model,
characterizes the probability of each value occurring from a range of possible values.  Probability
distributions may be used to characterize variability (PDFv) or uncertainty (PDFu).  One advantage of
using a PDFv and PDFu is that distributions represent a large set of data values in a compact way (Law
and Kelton, 1991).  For example, a lognormal distribution provides a good fit to a large data set of tap
water ingestion rates (n=5,600) among children ages 1 to 11 years (Roseberry and Burmaster, 1992). 
Therefore, the distribution type (lognormal) and associated parameters (mean and standard deviation)
fully describes the PDFv for intake rates, from which other statistics of interest can be calculated (e.g.,
median, and 95th percentile).  Reducing a complex exposure model to a series of representative and well-
fitting distributions can facilitate both the quantitative analysis and the communication of the modeling
methodology.  Alternatively, a PDFu may be specified to characterize parameter uncertainty.  For
example, the sample mean ( ) is generally an uncertain estimate of the population mean (:) due tox
measurement error, small sample sizes, and other issues regarding representativeness (see Section B.3.1). 
A PDFu can be used to represent the distribution of possible values for the true, but unknown parameter. 
Understanding whether uncertainty or variability is being represented by a PDF is critical to determining
how the distribution and parameters should be specified and used in a PRA. 
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EXHIBIT B-1

DEFINITIONS FOR APPENDIX B

Bayesian Analysis - Statistical analysis that describes the probability of an event as the degree of belief or confidence
that a person has, given some state of knowledge, that the event will occur.  Bayesian Monte Carlo combines a
prior probability distribution and a likelihood function to yield a posterior distribution (see Appendix D for
examples).  Also called subjective view of probability, in contrast to the frequentist view of probability.

Bin - Regarding a histogram or frequency distribution, an interval within the range of a random variable for which a
count (or percentage) of the observations is made.  The number of bins for a histogram is determined on a case-
by-case basis.  In general, equal interval widths are used for each bin; however, in some cases (e.g., Chi-square
test), individual bin widths are calculated so as to divide the distribution into intervals of equal probability.

Countably Infinite - Used to describe some discrete random variables, this term refers to a set of numbers that can be
counted with integers (e.g., one, two, three) and that has no upper limit.  Examples include the number of tosses
required for a coin to show a head—we can count each toss, but it is possible that at least one more toss is
needed.  The number of dust particles in a volume of air is another example.  Countably finite implies there is an
upper limit (e.g., days of work per year).

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative probability of
occurrence for a random independent variable.  Each value c of the function is the probability that a random
observation x will be less than or equal to c.

Empirical Distribution Function (EDF) -The EDF, also called the empirical CDF (ECDF), is based on the frequency
distribution of observed values for a random variable.  It is a stepwise distribution function calculated directly
from the sample, in which each data point is assigned an equal probability.

Frequency Distribution or Histogram - A graphic (plot) summarizing the frequency of the values observed or
measured from a population.  It conveys the range of values and the count (or proportion of the sample) that was
observed across that range.

Goodness-of-Fit (GoF) Test - A method for examining how well (or poorly) a sample of data can be described by a
hypothesized probability distribution for the population.  Generally involves an hypothesis test in which the null
hypothesis H0 is that a random variable X follows a specific probability distribution F0.  That is, H0: F=F0 and
Ha: F … F0.

Independence - Two events A and B are independent if whether or not A occurs does not change the probability that B
occurs.  Likewise, knowing the value of B does not affect the value of A.  Input variables, X and Y, are
independent if the probability of any paired values (X, Y) is equal to the probability of X multiplied by the
probability of Y.  In mathematical terms, X and Y are independent if f(X, Y)=f(X) x f(Y).  Independence is not
synonymous with correlation.  If X and Y are independent, then their correlation is zero, Cor(X, Y)= 0.  But, the
converse is not always true.  There may be a nonlinear relationship between X and Y that yields Cor(X, Y)=0, but
the variables are highly dependent. 

Nonparametric Method - Also called a distribution-free method, a procedure for making statistical inferences without
assuming that the population distribution fits a theoretical distribution such as normal or lognormal.  Common
examples are the Spearman rank correlation, (see Appendix A) and the bootstrap-t approach..

Parameter - In PRA, a parameter is a quantity that characterizes the probability distribution of a random variable.  For
example, a normal probability distribution may be defined by two parameters (e.g., arithmetic mean and standard
deviation). 

Parametric Distribution - A theoretical distribution specified by a distribution type and one or more parameters. 
Examples include the normal, Poisson, and beta distributions.
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EXHIBIT B-1 —Continued
DEFINITIONS FOR APPENDIX B

Probability Density Function (PDF) -  A function representing the probability distribution of a continuous random
variable.  The density at a point refers to the probability that the variable will have a value in a narrow range
about that point. 

Probability Distribution - The mathematical description of a function that associates probabilities with specified
intervals or values for a random variable.  A probability distribution can be displayed in a graph (e.g., PDF
or CDF), summarized in a table that gives the distribution name and parameters, or expressed as a
mathematical equation.  In PRA, the process of selecting or fitting a distribution that characterizes
variability or uncertainty can also be referred to as applying a probability model to characterize variability or
uncertainty.  In this guidance, the probability model is considered to be one source of model uncertainty.

Step Function - A mathematical function that remains constant within an interval, but may  change in value from one
interval to the next.  Cumulative distribution functions for discrete random variables are step functions. 

Z-score - The value of a normally distributed random variable that has been standardized to have a mean of zero and a
SD of one by the transformation Z=(X–:)/F.  Statistical tables typically give the area to the left of the
z-score value.  For example, the area to the left of z=1.645 is 0.95.  Z-scores indicate the direction (+/-) and
number of standard deviations away from the mean that a particular datum lies assuming X is normally
distributed.  Microsoft Excel’s NORMSDIST(z) function gives the probability p such that p=Pr(Z # z), while
the NORMSINV(p) function gives the z-score zp associated with probability p such that  p=Pr(Z # zp).

B.1.0 CONCEPTUAL APPROACH FOR INCORPORATING A PROBABILITY DISTRIBUTION IN A PRA

Often, more than one probability
distribution may appear to be suitable for
characterizing a random variable.  A step-wise,
tiered approach is recommended for
incorporating probability distributions in a
PRA.  This appendix provides guidance on
selecting and fitting distributions for variability
and parameter uncertainty based on the overall
strategy given in Exhibit B-2.  Many of the
same principles of selecting and fitting
distributions are also given in EPA's Report of
the Workshop on Selecting Input Distributions
for Probabilistic Assessments (U.S. EPA, 1999a).

Probability distributions may be developed to characterize variability or uncertainty.  Example
flow charts for specifying a PDFv and PDFu are given in Figures B-1 and B-2, respectively.  Both
approaches outline an iterative process that involves three general activities:  (1) identify potentially
important sources of variability or uncertainty to determine if a PDF may be needed; (2) apply the general
strategy given in Exhibit B-1 and evaluate plausible alternatives for distributions and parameter estimates;
and (3) document the decision process.  The flowcharts provide a general outline of the process and
contain terms which are explained in subsequent sections.  Just as with the point estimate approach,
different sites may require different probability distributions for input variables, depending on the unique
risk management issues and sources of uncertainty.

EXHIBIT B-2

GENERAL STRATEGY FOR SELECTING
 AND FITTING DISTRIBUTIONS

(1) Hypothesize a family of distributions
(2) Assess quality of fit of distribution
(3) Estimate distribution parameters
(4) Assess quality of fit of parameters
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B.2.0 PRELIMINARY SENSITIVITY ANALYSIS

Selecting and fitting probability distributions for all of the input variables can be resource
intensive and is generally unnecessary.  Ideally, a subset of variables could be identified that contribute to
most of the variability and uncertainty in a risk estimate.  Sensitivity analysis can play an important role
in helping to identify and quantitatively rank the major exposure pathways and variables.  Since the
information obtained from a sensitivity analysis may vary, depending on the approach(es) used and the
information available to characterize the input variables, risk assessors should understand inherent
limitations of each approach.  A variety of approaches that are common for Tier 1 and 2 analyses are
described and applied to a hypothetical example in Appendix A.  

In a Tier 1 assessment, sensitivity analysis is typically limited to exploring the effect of
alternative point estimates on the risk estimate.  These methods can be helpful if additional information
regarding the variability in the input variables is incorporated into the analysis (i.e., sensitivity scores). 
Alternatively, a reasonable approach is to specify preliminary probability distributions for one or more
inputs in order to maximize the advantages of probabilistic methods.  The difference between a
preliminary distribution and a subsequent distribution reflects the level of effort invested in characterizing
variability and uncertainty.  If a robust data set is available in Tier 1 to define point estimates, then a
preliminary distribution may, in fact, fully characterize variability with very high confidence.  For other
variables, summary statistics, rather than sample data, may be available, allowing for estimates of central
tendency or plausible ranges.  The use of preliminary distributions reflects an effort to employ more
robust sensitivity analysis techniques without expending the effort and resources that might otherwise be
applied to a PRA in Tier 2.  The goal of the preliminary analysis would not be necessarily to evaluate
risks and/or develop a PRG; rather, the focus would be on identifying input variables that may be
important to explore more fully.  Preliminary sensitivity analysis can provide insight into the importance
of selecting among alternative probability distributions and exposure scenarios. 

One-dimensional Monte Carlo simulations with preliminary (or screening-level) distributions can
be run prior to engaging in a more involved process of selecting and fitting distributions.  The
distributions can be selected based on knowledge regarding the mechanisms that result in variability, and
information already available for determining point estimates (e.g., summary statistics, U.S. EPA
guidance, etc.).  Table B-1 provides examples of preliminary distributions that might be selected based on
the type of information available, sometimes referred to as the state of knowledge.  In many cases, the
distribution is intended to estimate the plausible bounds of a variable, while requiring no additional data
collection effort.  For example, given estimates of a lower bound [min], upper bound [max], and the
assumption that each value is equally likely, a uniform distribution would be used to represent variability
(or parameter uncertainty).  If no mechanistic basis for selecting a distribution exists, then the preliminary
distribution would be chosen based on the available information.  For example, given the estimates of the
arithmetic mean [:] and a percentile value [a] for a random variable, an exponential distribution might be
recommended with 8=1/:.

Guidance on matching the choice of the distribution to the state of knowledge is extended to a
more diverse array of scenarios later in this appendix (see Table B-4).
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1The preliminary distributions are based in part on maximum entropy concepts.  Maximum entropy is a technique for
determining the distribution that represents the maximum uncertainty allowed by the available information and data (Vose,
1996).  Although the approach can be used to quickly define distributions that maximize uncertainty, the credibility of the
distribution depends on the use of accurate, unbiased information.

2See Table B-2 for more detailed descriptions of selected distributions.
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Table B-1.  Examples of Preliminary Distributions Based on Information Available1, 2

Information / Constraints Distribution Shape

[a, b] uniform

[a, m, b] triangular

[ a, b, α1, α2, β] beta

[:, F] normal

γ exponential

[a, b, µ, σ] Johnson Sb,
Lognormal

[α, β] gamma

 a=minimum,  b=maximum, m=mode, α=shape parameter, :=mean,
 F=standard deviation, γ=average rate of occurrence of events, β=scale,

It may be informative to explore alternative choices for distributions applied to the same variable. 
For example, a simple yet informative approach is to run two 1-D MCA simulations for variability with
an input variable characterized first by a Johnson Sb (i.e., a four-parameter lognormal distribution; Hahn
and Shapiro, 1967) and then by a normal distribution.  The difference in the risk distribution, especially at
the percentile that is relevant to the risk management decision (e.g., 95th percentile), may offer insights
regarding the importance of the shape of the PDFv.

B.3.0 WHAT DOES THE DISTRIBUTION REPRESENT?

Distributions may be specified to characterize variability or uncertainty.  Often, a Monte Carlo
simulation of variability will focus on describing differences between individuals in a population (i.e.,
inter-individual variability).  In this case, the goal is to select a distribution that is representative of the
target population—the set of all receptors that are potentially at risk.  There may be uncertainty that the
choice of PDFv reflects variability in the target population.  In general, risk assessors should fully
disclose uncertainties in the PDFv, especially because the use of a distribution instead of a point estimate
may inappropriately suggest that there is a greater state of knowledge.  Following the tiered process (see
Chapter 2, Figure 2-1), there are multiple opportunities to consider consequences of alternative modeling
approaches early in the process of developing a probabilistic model.  The importance of relating the
distribution to the target population, clearly distinguishing between variability and uncertainty, and
evaluating data representativeness is emphasized in Sections B.3.1, B.3.2 and B.4.
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B.3.1 CONCEPTS OF POPULATION AND SAMPLING

The distinction between a target population, a sampled population, and a statistical population
should be considered carefully when evaluating information for use in both Tier 1 and Tier 2 of a PRA. 
The target population is often considered to be the “population of concern”.  A risk assessor is often
interested in quantifying specific attributes of the population (e.g., exposure duration, exposure
frequency, etc.).  A sampled population is the set of receptors available for selection and measurement. 
For purposes of this appendix/guidance, the sampled population may be the target population or it may be
a different population that is thought to be representative of the target population.  For purposes of this
guidance, a statistical population is an approximation of the target population based on information
obtained from the sampled population.

Distributions are generated from representative sample populations to make inferences about the
target population.  Ideally, a sampled population should be a subset of a target population and should be
selected for measurement to provide accurate and representative information about the exposure factor
being studied.  However, defining representative samples is a matter of interpretation.
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Sensitivity Analysis
(i.e., Tier 1 and Tier 2)

Is the factor 
influential?

Use a health protective 
point estimate

Present in workplan
and report

Is the factor     
amenable to expert 

judgment?

Conduct expert 
elicitation for PDFAre the data 

representative of 
of the target 
population?

No

Yes

Yes

Yes

No

No

No

Continued on next 
page

NoDo sufficient data 
exist or can they be 
collected to run a 

refined 1-D MCA?

Yes

Yes

Present PDF/EDF in 
workplan and report

Can the data be 
adjusted to better 
represent the target 
population (e.g., 
weighting factors)

Consider the mechanistic 
characteristics of the data 
(e.g., continuous or discrete 
variable)

Figure B-1 (page 1 of 2). Conceptual approach for incorporating probability distributions
for variability in PRA.
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Present PDF/EDF in 
work plan and report

(Continued from previous page)

Summary statistics and graphical data 
exploration (e.g., histograms)

Use an EDF?

Choose a type of PDF
(Normal, Weibull, etc.)

Estimate percentile 
values of EDF

No Yes

Appropriate 
Goodness-of-Fit?

Estimate 
parameters

Apply truncation limits 
as appropriate

Specify a mixture of 
distributions

Would a 
mixture of 

distributions 
better represent 

the data?

Estimate tails and 
truncation limits

No

Yes

No

Yes

Present PDF/EDF in 
work plan and report

(Continued from previous page)

Summary statistics and graphical data 
exploration (e.g., histograms)

Use an EDF?

Choose a type of PDF
(Normal, Weibull, etc.)

Estimate percentile 
values of EDF

No Yes

Appropriate 
Goodness-of-Fit?

Estimate 
parameters

Apply truncation limits 
as appropriate

Specify a mixture of 
distributions

Would a 
mixture of 

distributions 
better represent 

the data?

Would a 
mixture of 

distributions 
better represent 

the data?

Estimate tails and 
truncation limits

No

Yes

No

Yes

Figure B-1 (page 2 of 2).  Conceptual approach for incorporating probability distributions
for variability in PRA.
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Identify dominant 
exposure pathway(s) from

sensitivity analysis
(Appendix A, Section B.2.0)

Identify factor(s)that may
contribute to uncertainty in 

the risk distribution
(Appendix A, Section B.2.0)

Select a plausible risk 
exposure model for the 

exposure pathway
(Fig. B-2b)

Select probability
distribution(s) for variability

in exposure factor(s) (Fig. B-1) 

Quantify parameter 
uncertainty with point 

estimates or distribution(s)
(Fig. B-2c)  

Run simulation to 
propagate variability and 
uncertainty (e.g., multiple 

1-D MCAs; 2-D MCA;  
MEE, etc.) 

Continue
quantifying
uncertainty?

Present
results in graphical
and tabular format

YesNo

Figure B-2a  (page 1 of 3).  Conceptual approach for quantifying model and parameter 
uncertainty in PRA.
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Run simulation 
with candidate 
exposure model

Identify dominant
exposure pathway(s) 

from
Sensitivity Analysis

(Appendix A and Section 
B.2.0)

Is more than 
one model

plausible for an 
exposure pathway? 

Identify and evaluate the exposure 
factor(s) quantified by a 

candidate exposure model

Purpose and Objectives
• regulatory context
• scientific questions addressed
• application niche (physical, 

chemical, biological system)
• status of agency and/or peer review

Defining and Limiting Components 
• process(es) characterized 

(e.g., transport, diffusion,
volatilization, bioavailability, etc.)

• temporal and spatial scales 
• level of aggregation/simplification 

Theoretical Basis
• mechanistic basis for algorithms

• numerical or analytic solution

Select alternative
exposure model

No Yes

No

Yes

Is the 
exposure model 

appropriate?

Run simulation 
with candidate 
exposure model

Identify dominant
exposure pathway(s) 

from
Sensitivity Analysis

(Appendix A and Section 
B.2.0)

Is more than 
one model

plausible for an 
exposure pathway? 

Identify and evaluate the exposure 
factor(s) quantified by a 

candidate exposure model

Purpose and Objectives
• regulatory context
• scientific questions addressed
• application niche (physical, 

chemical, biological system)
• status of agency and/or peer review

Defining and Limiting Components 
• process(es) characterized 

(e.g., transport, diffusion,
volatilization, bioavailability, etc.)

• temporal and spatial scales 
• level of aggregation/simplification 

Theoretical Basis
• mechanistic basis for algorithms

• numerical or analytic solution

Select alternative
exposure model

No Yes

No

Yes

Is the 
exposure model 

appropriate?

Is the 
exposure model 

appropriate?

Figure B-2b (page 2 of 3).  Detailed conceptual approach for incorporating model uncertainty in PRA.
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Present results in 
graphical and 
tabular format

Estimate parameters 
(e.g., MLE, method of 

moments, etc.)

Is information 
available to quantify 

parameter 
uncertainty? 

Is the parameter 
amenable to expert 

elicitation?

Conduct expert 
elicitation

Select distribution 
(or point estimate) for 

uncertainty

Run simulation to 
propagate variability 

and uncertainty

Should an alternative 
probability model 

(i.e., PDFv or PDFu) 
be explored?

Continue with 
process 

acknowledging 
limits of data

No

Yes Yes

Yes No

No

Run sensitivity 
analysis to identify 

important sources of 
uncertainty

Identify candidate probability 
distribution(s) for variability (Fig. B-1):

• mechanistic basis for variability 
• exploratory data analysis
• expert judgment

Present results in 
graphical and 
tabular format

Estimate parameters 
(e.g., MLE, method of 

moments, etc.)
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available to quantify 
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Figure B-2c (page 3 of 3).  Detailed conceptual approach for incorporating parameter
uncertainty in PRA.
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B.3.2 CONSIDERING VARIABILITY AND UNCERTAINTY IN SELECTING AND FITTING DISTRIBUTIONS

Multiple probability distributions may be used to describe variability and uncertainty in an input
variable.  For example, a normal probability distribution may be selected to characterize variability in
body weight, whereas a uniform distribution may selected to characterize uncertainty in the estimate of
the arithmetic mean of the normal distribution.  The appropriate interpretation and analysis of data for an
exposure variable will depend on whether one is specifying a PDFv or PDFu.  Figure B-1 outlines one
useful process for selecting distributions for variability, whereas Figure B-2 (three pages) outlines a
useful process for quantifying both model and parameter uncertainty.

Variability generally refers to observed differences attributable to true heterogeneity or diversity
in a population (U.S. EPA, 1997b).  Variability results from natural random processes.  Inter-individual
variability may stem from environmental, lifestyle, and genetic differences.  Examples include human
physiological variation (e.g., natural variation in body weight, height, breathing rates, drinking water
intake rates), changes in weather, variation in soil types, and differences in contaminant concentrations in
the environment.  Intra-individual variability may reflect age-specific changes (e.g., body weight and
height).  Variability is not reducible by further measurement or study.  A PDF for variability can usually
be obtained by fitting a distribution to the sample measurements. 

Sources of Uncertainty

Uncertainty generally refers to the lack of knowledge about specific factors, parameters, or
models (U.S. EPA, 1997b).  Although uncertainty in exposure and risk assessment may be unavoidable
due to the necessary simplification of real-world processes, it generally can be reduced by further
measurement and study.  Parameter uncertainty may stem in part from measurement errors, sampling
errors, or other systematic errors in the collection and aggregation of data.  Model uncertainty may reflect
the simplification of a complex process, a mis-specification of the exposure model structure, a misuse or
misapplication of an exposure model, use of the wrong distributional model, and the use of surrogate data
or variables.  Scenario uncertainty may reflect uncertainty in an exposure model, such as the relevance of
specific exposure pathways to the target population.  A conceptual exposure model can be used to provide
direction in specifying a probability distribution for uncertainty.  For example, the concentration term in a
Superfund risk assessment typically represents the long-term average concentration to which a receptor is
exposed (see Chapter 5).  An uncertainty distribution for the concentration term could be developed in
part from ideas about the statistical uncertainty of estimating the long-term average from a small sample,
and the assumption of random movement of the receptors within a defined exposure unit.

Probability Distributions and Model Uncertainty

This appendix primarily focuses on methods for quantifying uncertainty associated with both the
selection of a variability distribution, and estimating parameters of a distribution.  A probability
distribution can be referred to as a type of model in the sense that it is an approximation, and often a
simplified representation of variability or uncertainty that combines both data and judgment.  A broader
use of the term model refers to a representation of a chemical, physical, or biological process.  In risk
assessment, many different models have been developed, with varying objectives, major defining and
limiting components, and theoretical basis.  Figure B-2b provides a general process for exploring model
uncertainty of this type.  This figure reflects the concepts and spirit of the Agency Guidance for
Conducting External Peer Review of Environmental Regulatory Modeling (U.S. EPA, 1994).  In general,
EPA regional risk assessors should be consulted in order to determine the types of exposure and risk
models that may be plausible for quantifying exposure at a particular site.
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Parameter Uncertainty

Quantifying parameter uncertainty in a probabilistic model typically requires judgment (see
Appendix C).  When data are uncertain due to, for example, small sample sizes or questionable
representativeness (Section B.3.1), Monte Carlo simulation can be a useful tool for demonstrating the
effect of the uncertainty on the risk estimates.  It is most important to model uncertainty when the
sensitive input variables are uncertain.  Uncertainty can be quantified in both the point estimate approach
(e.g., a range of possible central tendency exposure values) or a probabilistic approach (e.g., a range of
possible values for the arithmetic mean of a distribution).  While a quantitative uncertainty analysis may
complicate a risk management decision by suggesting that risk estimates are highly uncertain, this
information can be helpful by focusing additional efforts towards collecting data and reducing uncertainty
in the most sensitive input variables.  Likewise, if an estimated risk is below a regulatory level of concern,
even after quantifying highly uncertain inputs to the exposure model, the risk manager may be more
confident in a decision.  As emphasized in Figures B-2a, B-2b, and B-2c, risk assessors should generally
refrain from setting ad hoc probabilities to different candidate distributions in a single Monte Carlo
simulation.  Instead, this guidance strongly recommends exploring model or parameter uncertainty by
running a separate simulation with each candidate model.  For example, rather than randomly assigning a
beta distribution or a lognormal distribution to an exposure variable for each iteration of a simulation,
separate simulations should be run with the candidate probability distributions.  Similarly, if a range of
temporal or spatial scales is plausible for quantifying exposure, multiple simulations should be designed
to demonstrate the importance of these assumptions on the risk estimates.

Uncertainty in parameter estimates may be characterized using a variety of methods.  Similar to a
PDF for variability, a PDF for parameter uncertainty may be represented by a probability distribution
with a unique set of parameters.  Sometimes the distribution for uncertainty can be specified by knowing
(or assuming) a distribution for variability.  For example, if X is a normally distributed random variable,
the Student’s t distribution and the Chi-square (P2) distribution can be used to develop PDFu’s for random
measurement error uncertainty in the sample mean and variance, respectively.  The PDFu for both the
Student’s t and Chi-square distributions is determined by the sample size (n).  If a PDFu cannot be
determined from the PDF for variability, or assumptions regarding the underlying distribution for
variability are not supportable, nonparametric or “distribution free” techniques may be used (e.g.,
bootstrapping).  Both parametric and nonparametric techniques may yield confidence intervals for
estimates of population parameters.  

B.4.0 DO DATA EXIST TO SELECT DISTRIBUTIONS?

Developing site-specific PDFs for every exposure assumption (or toxicity value, in the case of
ecological risk) can be time and resource intensive, and in many cases, may not add value to the risk
management decision.  For those exposure variables that do exert a significant influence on risk, a PDF
may be developed from site-specific data, data sets available in the open literature (e.g., EPA’s Exposure
Factors Handbook, U.S. EPA 1997a), or from existing PDFs in the literature (e.g., Oregon DEQ, 1998).

At Superfund sites, perhaps the most common exposure variable that will be described by site-
specific data will be the media concentration term.  The sample (i.e., collection of empirical
measurements) will most often be used to estimate either a point estimate of uncertainty (e.g., an upper
confidence limit for the arithmetic mean concentration—the 95% UCL), or a distribution that
characterizes the full distribution of uncertainty in the mean.  Exposure variables such as ingestion rates,
exposure duration, and exposure frequency will most likely be derived from existing PDFs or data sets in
the open literature.  The Agency supports the development PDFs that may be generally applicable to
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different sites (e.g., body weight, water intake, and exposure duration) (U.S. EPA, 1999b, 2001).  Until
final recommendations of PDFs are available for the more generic exposure variables, PDFs for exposure
variables that lack adequate site-specific data will typically be selected from: (1) existing PDFs; (2) data
on the entire U.S. population; or (3) data on subsets of the U.S. population that most closely represent the
target population at a site.  If risks to a sensitive subpopulation, such as young children, elderly adults,
ethnic groups, or subsistence fishermen, are a concern at a site, then existing PDFs or data sets that best
characterize these subpopulations would be preferable to national distributions based on the entire U.S.
population.  If adequate site-specific data are available to characterize any of the exposure variables,
distributions can be fit to those data. 

Uncertainty Associated with Sample Size

An appropriate question to consider when evaluating data sets for use in exposure and risk
assessment is, “What sample size is sufficient?”  Generally, the larger the sample size (n), the greater
one’s confidence in the choice of a probability distribution and the corresponding parameter estimates. 
Conversely, for small n, Goodness-of-fit (GoF) tests (see Section B.6.2) will often fail to reject many of
the hypothesized PDFs.  In general, there is no rule of thumb for the minimum sample size needed to
specify a distribution for variability or uncertainty.  Increasing a sample size may be an appropriate option
to consider when evaluating risk management strategies to reduce uncertainty. 

Statistical sampling, in general, is important to consider when estimating parameters of a
probability distribution.  One rule of thumb is that the parameters that reflect the central tendency of a
distribution (e.g., arithmetic mean, median, mode) can be estimated with greater confidence than
parameters that reflect the extremes of the distribution (e.g., 95th percentile).  When deciding on
appropriate truncation limits (minimum and maximum values), it is unlikely that the statistical sample
actually includes the plausible bounds.  See Section B.5.7 for more detailed guidance on specifying
truncation limits for probability distributions.

B.4.1 WHAT ARE REPRESENTATIVE DATA?

The question, “What is a representative sample?”, is important to address when selecting and
fitting distributions to data.  Many of the factors that may determine representativeness (e.g., sample size
and the method of selecting the target, and sample population (Section B.3.1)) are relevant to both point
estimate and PRA.  EPA’s Guidance for Data Usability in Risk Assessment, Part A (U.S. EPA, 1992)
describes representativeness for risk assessment as the extent to which data define the true risk to human
health and the environment.

The goal of representativeness is easy to understand.  However, evaluating data to determine if
they are representative is more difficult, especially if the problem and decision objectives have not been
clearly defined.

The importance of representativeness also varies with the level of complexity of the assessment. 
If a screening level assessment is desired, for example, to determine if concentrations exceed a health
protective exposure level, then representativeness may not be as important as health protectiveness.
However, if a complete baseline risk assessment is planned, the risk assessor should generally consider
the value added by more complex analyses (e.g., site-specific data collection, sensitivity analysis, and
exposure modeling).  A tiered approach for making these decisions for a PRA is presented in Chapter 2,
and examples of more complex analyses are presented in Appendix D.  In addition, the Agency (U.S.
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EPA, 1999a) summarizes the advantages and weaknesses of proposed checklists for risk assessors to
evaluate representativeness of exposure factors data.

For purposes of this guidance, a surrogate study is one conducted on a sampled population that is
similar to, but not a subset of, the target population.  When using surrogate data, the risk assessor should
generally exercise judgment about the representativeness of the data to the target population.  For
example, the distribution of body weights of deer mice from two independent samples from similar
ecosystems may differ depending on the age structure, proportion of males and females, and the time of
year that the samples were obtained.  When in doubt about which study results to use in defining a
probability distribution, one option is to develop a distribution and calculate risks with each sample
independently, and compare the results.  This approach can be a simple, but effective type of uncertainty
analysis.  At a minimum, uncertainties associated with the use of surrogate studies should be discussed in
the assessment.

In many cases, the surrogate population shares common attributes with the target population, but
is not truly representative.  The risk assessor should then determine the importance of the discrepancies
and whether adjustments can be made to reduce those differences.  There are a wide variety of methods
that can be used to account for such discrepancies, depending on the available information.  Summary
statistics (e.g., as presented by the Exposure Factors Handbook, U.S. EPA, 1997a) can be used to
estimate linear characteristics of the target population from the sample population.  For example, if the
mean, standard deviation, and various percentiles of the sample population are known, then the mean or
proportion exceeding a fixed threshold can be calculated using a simple weighted average.  Adjustment
options are more numerous if the risk assessor has access to the raw data.  Adjustments for raw data
include: weighted averages, weighted proportions, transformations, and grouping of the data based on the
available information (e.g., empirical data, and professional judgment).

In most cases, the evaluation of data representativeness will necessarily involve judgment.  The
workplan should generally include a description of the data, the basis for the selection of each
distribution, and the method used to estimate parameters (see Chapter 2).  Empirical data (i.e.,
observations) are typically used to select distributions and derive parameter estimates.  However, it may
be necessary to use expert judgment or elicitation in cases where the quality or quantity of available data
are found to be inadequate.

B.4.2 THE ROLE OF EXPERT JUDGMENT

Expert judgment refers to inferential opinion of a specialist or group of specialists within an area
of their expertise.  When there is uncertainty associated with an input variable, such as a data gap, expert
judgment may be appropriate for obtaining distributions.  Note that distributions elicited from experts
reflect individual or group inferences, rather than empirical evidence.  Distributions based on expert
judgment can serve as Bayesian priors in a decision-analytic framework.  The distributions and Bayesian
priors can be modified as new empirical data become available.  There is a rich literature base regarding
the protocol for conducting expert elicitations and using the results to support decisions (Morgan and
Henrion, 1990).  Elicitation of expert judgment has been used to obtain distributions for risk assessments
(Morgan and Henrion, 1990; Hora, 1992; U.S. EPA, 1997b) and for developing air quality standards
(U.S. EPA, 1982).

Bayesian analysis is a statistical approach that allows the current state of knowledge, expressed as
a probability distribution, to be formally combined with new data to reach an updated information state. 
In PRA, Bayesian Monte Carlo analysis (Bayesian MCA) can be used to determine the reduction in
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EXHIBIT B-3
FACTORS TO CONSIDER IN SELECTING A

PROBABILITY DISTRIBUTION*
C Is there a mechanistic basis for choosing a

distributional family?  
C Is the shape of the distribution likely to be

dictated by physical or biological properties or
other mechanisms?

C Is the variable discrete or continuous? 
C What are the bounds of the variable? 
C Is the distribution skewed or symmetric?  
C If the distribution is thought to be skewed, in

which direction?  
C What other aspects of the shape of the

distribution are known?
C How well do the tails of the distribution

represent the observations?

*Source: U.S. EPA, 1997b

uncertainty arising from new information.  When combined with techniques from decision analysis,
Bayesian MCA can help to determine the type
and quantity of data that generally should be
collected to reduce uncertainty.  The benefits and
limitations of expert elicitation, Bayesian
statistics, Bayesian MCA, and decision analysis
(i.e., value of information [VOI]), as applied to
PRA, are discussed in greater detail in
Appendix D.

B.5.0 FITTING DISTRIBUTIONS TO DATA

Sometimes more than one probability
distribution may adequately characterize
variability or uncertainty.  The choice of a
distribution should be based on the available data
and on knowledge of the mechanisms or
processes that result in variability.  In general, the
preferred choice is the simplest probability model
that adequately characterizes variability or
uncertainty and is consistent with the mechanism
underlying the data.  For example, a log-logistic
distribution would not necessarily be selected
over a 2-parameter lognormal distribution simply
because it was ranked higher in a GoF test by a
statistical software package.  Some distributions (e.g., normal, lognormal) are well known among risk
assessors.  The statistical properties for these distributions are well understood and the formal descriptions
can often be brief.  

Important factors to consider in selecting a PDF are described in Exhibit B-3.  An initial step in
selecting a distribution should be to determine if the random variable is discrete or continuous. 
Continuous variables take any value over one or more intervals and generally represent measurements
(e.g., height, weight, concentration).  For a continuous variable, a mathematical function generally
describes the probability for each value across an interval.  Discrete variables take either a finite or
countably infinite number of values.  Unique probabilities are assigned to each value of a discrete
variable.  The number of rainfall events in a month is an example of a discrete random variable, whereas
the amount of rainfall is a continuous variable.  Similarly, the number of fish meals per month is a
discrete variable, whereas the average size (mass) of a fish meal is continuous.  

Another important consideration is whether there are plausible bounds or limits for a variable. 
For example, it is highly unlikely that an American adult will weigh less than 30 kg or more than 180 kg. 
Most exposure variables may assume any nonnegative value within a plausible range.  Therefore,
distributions will generally be truncated at a minimum of zero (or higher), or a probability distribution
that is theoretically bounded at a nonzero value may be specified (see Table B-3).  A more detailed
discussion of factors to consider in selecting a PDF and specifying parameter values is provided below.
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B.5.1 CONSIDERING THE UNDERLYING MECHANISM

There may be mechanistic reasons depending on known physical or biological processes that
dictate the shape of the distribution.  For example, normal distributions result from processes that sum
random variables whereas lognormal distributions result from multiplication of random variables.  A
Poisson distribution is used to characterize the number of independent and randomly distributed events in
a unit of time or space.  An exponential distribution would describe the inter-arrival times of independent
and randomly distributed events occurring at a constant rate.  If, instead, the elapsed time until arrival of
the kth event is of interest, then the appropriate probability distribution would be the gamma distribution
(Morgan and Henrion, 1990).

L In all cases, it is incumbent on the risk assessor to explain clearly and fully the
reasoning underlying the choice of a distribution for a given exposure
variable—primarily from a mechanistic standpoint if possible.

Table B-2 lists some of the probability distributions that may commonly be used in PRA.  This is
not an exhaustive list, and the scientific literature contains numerous examples with alternative
distributions.  Where practicable, a mechanistic basis is presented for the choice of the distribution.  For
some distributions, such as beta, triangular, and uniform, a mechanistic basis is not offered because it is
unlikely that a chemical or biological process will yield a random variable with that particular shape. 
Nevertheless, such distributions may be appropriate for use in PRA because they reflect the extent of
information that is available to characterize a specific random variable.  Preliminary distributions are
discussed in Section B.2.0 and Table B-4.  Because many of the distributions given in Table B-2 can
assume flexible shapes, they offer practical choices for characterizing variability.

Table B-2 also illustrates probability distributions (both PDFs and CDFs) commonly used in
PRA.  While intuitively appealing, identifying a mechanistic basis for a distribution can be difficult for
many exposure variables; however, it may be relatively apparent that the variable is bounded by a
minimum (e.g., ingestion rate $ 0 mg/day) and a maximum (e.g., absorption fraction # 100%), or that the
relevant chance mechanism results in a discrete distribution rather than a continuous distribution, as
described above.

For each distribution, one or more examples with different parameter estimates are given to
demonstrate the flexibility in the shape of the PDF.  In addition to the descriptions of the distributions in
Tables B-2, Table B-3 provides a summary of the parameters and theoretical bounds that define the PDFs. 
For a further discussion of characteristics of PDFs see Thompson, 1999.  Figures (a-h) immediately
following Table B-2 present examples of PDFs and the corresponding CDFs for distributions commonly
used in PRA.
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Table B-2.  Examples of Selected Probability Distributions for PRA.

Distribution Mechanistic Basis Example(s)

Beta
Figure (e)

Describes a continuous random variable with
finite upper and lower bounds.  This
distribution can take on very flexible shapes,
but generally does not have a mechanistic
basis.

Absorption fraction bounded by 0 and 100%;
fraction of time an individual spends indoors.

Binomial Describes a discrete random variable produced
by processes that: (1) occur in a fixed number
n of repeated independent “trials”; (2) yield
only one of two possible outcomes (e.g.,
“success” or “failure”) at each trial; and
(3) have constant probability p of “success”.  A
binomial distribution is characterized by
parameters n, p, and x, representing the number
of trials, the probability of success of each
trial, and the number of successes,
respectively.

The number of animals with tumors (or some
other quantitative outcome) in a chronic animal
bioassay.

Exponential
Figure (h)

If instead of counting the number of events in
the Poisson process (below), one measures the
time (or distance) between any two successive,
random, independent events. 

The length of time between two radiation
counts; length of time between major storm
events; distance between impact points of two
artillery shells.

Gamma
Figure (g)

Similar to exponential except that time until
occurrence of the kth event in the Poisson
process is measured (rather than time between
successive events).  Reduces to exponential
when k=1.

Time until kth radiation count; elapsed time until
kth major storm event. 

Lognormal
Figure (b)

Multiplication of a large number of random
variables, or equivalently adding the
logarithms of those numbers, will tend to yield
a distribution with a lognormal shape.

Chemical concentrations in environmental
media; media contact rates; rates and flows in
both fate and transport models.  Because the
basic risk equation is multiplicative,
distributions of risk are generally lognormal.  In
practice, lognormal distributions often provide
good fits to data on chemical concentrations in
a variety of media (Gilbert, 1987; Ott, 1990).

Normal
Figure (a)

Addition of independent random variables,
with no one variable contributing substantially
to the total variation of the sum, will tend to
yield a distribution with a normal shape.  This
result is established by the central limit
theorem.

The “Gaussian Plume Model” for the dispersion
of air pollutants is based on the idea that, at a
micro level, individual parcels of air, or
molecules of pollutants, are subject to many
random collisions from other molecules that act
together as if a large number of random
numbers were being added/subtracted from an
initial 3-dimensional description of a position.

Poisson Observed when counting the frequency of
discrete events, where the events are
independent of one another, and randomly
distributed in space or time.  Approximates the
binomial distribution when sample size, n, is
large and probability, p, is small.

The number of counts of radiation that occur in
a particular time interval; the release of synaptic
transmitter from nerve cells; the number of
artillery shells falling within a fixed radius; the
occurrence of major storm events in a month;
number of leaks in average length of pipe.
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Triangular
Figure ©)

The PDF is shaped like a triangle, with
parameters representing plausible bounds and a
most likely value (i.e., mode).  This is a
“rough” probability model that generally
describes a random variable based on limited
information rather than mechanistic basis.

Variability in shower droplet diameter. 
Uncertainty in the mean air exchange rate in a
shower.

Uniform
Figure (d)

The PDF is shaped like a rectangle, with
parameters representing plausible bounds. 
This is a “rough” probability model that
generally describes a random variable based on
limited information rather than a mechanistic
basis. 

Variability in the air ventilation rate in a house.

Weibull
Figure (f)

Originated in reliability and (product) life
testing as a model for time to failure or life
length of a component when the failure rate
changes with time.  A very flexible model
taking a wide range of shapes.  If the failure
rate is constant with time, the Weibull reduces
to the exponential distribution.

Examples for exponential and gamma would
also be appropriate for Weibull.
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B. 5.2 EMPIRICAL DISTRIBUTION FUNCTIONS (EDFS)

In some cases, an empirical distribution function (EDF) may be preferred over fitting the data set
to a hypothesized distribution.  EDFs, also called empirical cumulative distribution functions (ECDF),
provide a way to use the data itself to define the distribution of the relevant variable.  Briefly, an EDF for
a random variable is described by a step function based on the frequency distribution of observed values. 
An EDF for a continuous random variable may be linearized by interpolating between levels of the
various bins in a frequency distribution.  The CDF for a linearized EDF appears as a line, rather than
steps.  Example B-3 at the end of this Appendix illustrates an EDF, linearized EDF, and beta distribution
("1=0.63, "2=2.85, rescaled to min=0, max=364) fit to percentile data for soil ingestion rates in children
(Stanek and Calabrese, 1995).  A plausible range (i.e., minimum and maximum values) was imposed on
the data set for this example. 

EDFs provide a complete representation
of the data with no loss of information.  They do
not depend on the assumptions associated with
estimating parameters for theoretical probability
models.  EDFs are designed to provide direct
information about the shape of the distribution,
which reveals skewness, multimodality, and
other features of the data set.  However, EDFs
may not adequately represent the tails of a
distribution due to limitations in data
acquisition.  In the simplest case, an EDF is
constrained to the extremes of the data set.  This
may be an unreasonable restriction if limiting
the EDF to the smallest and largest sample
values is likely to greatly underestimate the
distributional tails.  If this is an important source
of uncertainty, the risk assessor may choose to extend the tails of the distribution to plausible bounds or to
describe the tails with another distribution (see Exhibit B-4).  For example, an exponential distribution
may be used to extend the tails based on the last 5% of the data.  This method is based on extreme value
theory, and the observation that extreme values for many continuous, unbounded distributions follow an
exponential distribution (Bratley et al., 1987).  As with other probability models, uncertainty in the
plausible bounds of an EDF may be reduced by obtaining additional information.

Advantages and disadvantages of using EDFs in PRA are discussed in detail in the Report of the
Workshop on Selecting Input Distributions for Probabilistic Assessments (U.S. EPA, 1999a).

B.5.3 GRAPHICAL METHODS FOR SELECTING PROBABILITY DISTRIBUTIONS

Graphical methods can provide valuable insights and generally should be used in conjunction
with exploratory data analysis.  Examples of graphical methods are frequency distributions (i.e.,
histograms), stem-and-leaf plots, dot plots, line plots for discrete distributions, box-and-whisker plots, and
scatter plots (Tukey, 1977; Conover, 1980; Morgan and Henrion, 1990).

L Graphical methods are invaluable for exploring a data set to understand the
characteristics of the underlying population.

EXHIBIT B-4

VARIATIONS OF THE EDF

Linearized - Linearly interpolates between two
observations, yielding a linearized cumulative
distribution pattern.

Extended - In addition to linearizing (see above),
adds lower and upper bounds based on expert
judgment.

Mixed Exponential - Adds an exponential upper
and/or lower tail to the EDF.
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Together with statistical summaries, graphical data summaries can reveal important characteristics of a
data set, including skewness (asymmetry), number of peaks (multi-modality), behavior in the tails, and
data outliers.

Frequency Distribution or Histogram

The frequency distribution, or histogram, is a graphical approximation of the empirical PDF. 
Frequency distributions can be plotted on both linear and log scales.  The general strategy for selecting
the number of bins to partition the data is to avoid too much smoothing and too much jaggedness. 
Equation B-1 (U.S. EPA, 1999a) provides a starting point for estimating the number of bins based on the
sample size (n).

Probability Plotting

Another method that may be used to visualize distributions and estimate parameters is probability
plotting, also referred to as linear least squares regression or regression on ordered statistics.  This
technique involves finding a probability and data scale that plots the CDF of a hypothesized distribution
as a straight line.  The corresponding linearity of the CDF for the sample data provides a measure of the
GoF of the hypothesized distribution.  The general approach involves sorting the sample data in
ascending order and converting the ranks to percentiles.  The percentile value for the ith rank is calculated
according to Gilbert (1987) as:

An alternative formula is provided by Ott (1995):

Plotting positions given by Equations B-2 and B-3 are special cases of the more general formula given by
Equation B-4 (Helsel and Hirsch, 1992):

where a is a constant that varies from 0 (Equation B-3) to 0.5 (Equation B-2).

The percentiles are used to calculate the z-scores, which represent the number of standard
deviations away from the mean that a particular datum lies assuming the data are normally distributed. 
For normal distributions, the data are plotted against the z-scores; for lognormal distributions, the data are
log-transformed and plotted against the z-scores.  In both cases, parameters of the distribution can be
estimated from the least-squares regression line.  When the hypothesized distribution is a poor fit to the
data, p-plots can yield misleadingly low estimates of the standard deviation (Cullen and Frey, 1999). 
Both Gilbert (1987) and Ott (1995) provide excellent descriptions of the use of probability plotting to
derive parameter estimates for a given distribution.  Probability plotting techniques with best-fit lines
have been used to estimate parameters for a wide variety of distributions, including beta, Weibull, and
gamma.
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Cullen and Frey (1999) point out that probability plotting may not be a primary choice for
selecting a fitting distributions because the method violates an important assumption of least squares
regression—independence of the observations (see Appendix A, Exhibit A-5).  This is because the rank-
ordered data are no longer independent.  Nevertheless, this approach may yield good results when the fit
is good and the choice of distributions is somewhat subjective.

B.5.4 PARAMETER ESTIMATION METHODS

As a rule, there are often a number of different methods available for estimating a given
parameter.  The most appropriate method to apply may require judgment, depending on the relative
difficulty in applying a method for a particular parameter, as well as the desired statistical properties of
the method.  The following simple example provides a useful analogy.  Suppose that the parameter of
interest, A, is the total area of an approximately square exposure unit.  If the exposure unit is a perfect
square, and the length of one side (L1) is known, the area would be equal to L1

2 (i.e., for a square, A=Li
2). 

Suppose L is unknown, but two independent measurements, X1 and X2, are available to estimate the
length (see Exhibit B-5).  If it is assumed that the random variable, L, has a probability distribution with
mean :, then the area of the square piece of property is A=:2.  What is a reasonable estimate of the area

(i.e., ) based on X1 and X2?  Three plausible methods for calculating are given below.$ $A = µ 2 $µ 2

Because these three estimators will, as a rule, give different answers, it may be useful to set criteria for
selecting which one gives the “best” answer.  Some of the statistical criteria that are used for this purpose
are consistency, efficiency, robustness, sufficiency, and unbiasedness (see Exhibit B-6).  It turns out, each
method is relatively easy to implement, but the third method is preferred because it is a more efficient
estimator.

In many cases, particularly if a model is complex, potential estimators of the unknown parameters
are not readily apparent.  To assist in developing estimators, several general methods have been
developed.  Exhibit B-7 lists some of the more common parameter estimation methods. 

Perhaps the simplest method is the method of matching moments (MoMM), also called the
method of moments.  MoMM is appropriately named, as it involves expressing the unknown parameters
in terms of population moments and then “matching”, or equating the sample moments to the population

EXHIBIT B-5

ESTIMATING THE AREA OF A
HYPOTHETICAL EXPOSURE UNIT

Exposure
Unit

x1

x2
Exposure

Unit

x1

x2
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n

moments.  For example, the sample mean ( )x
and standard deviation (s) are estimators for the
corresponding population parameters (: and F). 

Maximum Likelihood Estimation (MLE)
is a commonly applied method, that is often
thought of as a parameter estimate for which the
observed data are most “likely”.  The likelihood
function is defined for independent continuous
random variables as follows:

L(θ1, θ2,...θk) = Π f(x1|θ1, θ2, ..., θk) 
     I=1

The likelihood function is evaluated based on the
product of the PDF for each value of x.  The
parameters of the probability model, (θk), are
chosen to maximize the likelihood function value
and thereby are most likely to produce the
sample data set (Cullen and Frey, 1999).

It has also been demonstrated that MLE
yields estimators that generally have good
properties when evaluated by the criteria listed
above.  In some cases (e.g., for smaller sample
sizes), these estimators are not unbiased;
however, this can often be accounted for by “adjusting” the estimator.  A familiar example of this
adjustment is in estimation of the variance of a normal distribution.  The MLE for the variance is biased
by a factor of ((n-1)/n), but this is easily corrected
by multiplying the MLE by (n/(–1)).  For some
distributions, calculations of the MLE are
straightforward.  For example, MLE for
parameters of a normal distribution are given by
the mean and standard deviation of the sample
data, the same as MoMM.  MLE for parameters of
a lognormal distribution are given by the mean and
standard deviation of the log-transformed data,
which is different from MoMM.  In general, MLE
calculations are complex, and commercial
software such as @Risk and Crystal Ball® may be
used.  A more detailed discussion of the derivation
and properties of MoMM and MLE can be found
in the statistics literature (e.g., Chapter 5 of Mood
and Graybill, 1963; Chapter 9 of Mendenhall and Scheaffer, 1973; Section 6.5 of Law and Kelton, 1991;
Section 5.6 of Cullen and Frey, 1999).  

EXHIBIT B-7

PARAMETER ESTIMATION METHODS

• Method of Matching Moments

• Maximum Likelihood

• Minimum Chi-Square

• Weighted Least-Squares

EXHIBIT B-6

CRITERIA FOR EVALUATING PARAMETER
ESTIMATION METHODS*

Consistency A consistent estimator converges to
the “true” value of the parameter as
the number of samples increases.

Efficiency An efficient estimator has minimal
variance in the sampling distribution
of the estimate.

Robustness A robust estimator is one that works
well even if there are departures from
the assumed underlying distribution.

Sufficiency A sufficient estimator is one that
makes maximum use of information
contained in a data set.

Unbiasedness An unbiased estimator yields an
average value of the parameter
estimate that is equal to that of the
population value.

*Source: Cullen and Frey, 1999
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B.5.5 DEALING WITH CORRELATIONS AMONG VARIABLES OR PARAMETERS

Correlations between exposure variables or between parameters of the probability distribution
may be important components of a probabilistic model.  Correlation is a measure of association between
two quantitative random variables.  Two random variables may either be positively or negatively
correlated.  A positive correlation exists between two variables if the value of X1 increases as the value of
X2 increases.  For example, higher hand dust lead levels have been associated with higher pediatric blood
lead levels (Charney et al., 1980).  A negative correlation exists between two variables if the value of X1
increases as the value of X2 decreases.  For example, studies suggest the ingestion of soil and dust
particles increases as particle size decreases (Calabrese et al., 1996).

A first step in identifying correlations is to assess the possible physical and statistical
relationships that exist between variables.  In an ecological risk assessment (ERA), for example, the
largest surf scoter (diving duck) does not consume the least amount of food, nor does the smallest surf
scoter consume the greatest amount of food.  Random sampling of body weight and ingestion rate as
separate parameters, however, allows for these two possibilities.  Neglecting a correlation between two
variables may restrict (underestimate) the tails of the ecological Hazard Quotient (HQ) for each chemical
of concern (COC), which are frequently the areas of the distribution of most interest. 

The degree to which correlations affect the output of a risk model depends on: (1) the strength of
correlations between the two variables, and (2) the contribution of the correlated variables to overall
variance in the output (Cullen and Frey, 1999).  Therefore, it is useful to conduct a preliminary sensitivity
analysis to assess the impact of alternative correlation assumptions on the model output.  If the impact is
significant, correlations should be identified and accounted for in the PRA.

There are several approaches to account for dependencies in MCA including: (1) modifying the
model to include the correlation; and (2) simulating dependence between variables for sample generation
(Cullen and Frey, 1999).  Modifying the model is preferred as simulation techniques cannot capture the
full complexity between model inputs.  However, when this is not possible, dependencies between
variables can be simulated and approximated by correlation coefficients and bivariate normal
distributions.

Correlation coefficients are a numerical measure of the strength and direction of the relationship
between two variables.  Sample correlation coefficients measure the linear relationship between variables. 
However, if two variables are from different probability distributions, it is unlikely that they are linearly
related.  Consequently, simulation software programs such as Crystal Ball® and @Risk can be used to
calculate and employ the nonparametric statistic, Spearman’s Rank Correlation Coefficients (Rho) in
simulating correlation between inputs.  Rank Correlation Coefficients measure the linear dependence not
of the data values themselves, but of the rank value of the data.  The ranks indicate relative positions in an
ordered series, not the quantitative differences between the positions.  The disadvantage of losing
information by using the rank values (rather than the actual values) is offset by the ability to correlate
random variables from different distribution types (See Appendix A).

Exhibit B-8 gives an example of a straightforward approach to specifying a rank correlation
between two input variables in a one-dimensional Monte Carlo analysis (1-D MCA) for variability.  A
range of correlations is explored as a form of uncertainty analysis on the distribution of intakes given a
fish advisory of 7.0 :g/day for a chemical.
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EXHIBIT B-8

CORRELATION OF INPUT VARIABLES FOR 1-D MCA OF VARIABILITY

Intake Equation Intake = (CF x IR x FI x EF x ED)/(BW x AT)

Variables Description and Units Units Point Estimate or PDFv

CF concentration in fish ug/kg 25

IR fish ingestion rate kg/meal lognormal (0.16, 0.07)1

FI fraction ingestion from source unitless 1.0

EF exposure frequency meals/yr lognormal (35.5, 25.0)1

ED exposure duration years 30

BW body weight kg 70

AT averaging time days 10950

     1Lognormal PDF parameters: arithmetic mean, standard deviation

< Correlation between IR and EF is suggested by Burger et al. (1999) study of 250 anglers on the Savannah
River, South Carolina.  Moderate correlation (Kendall’s tau=0.17, p=0.04)

< Uncertainty Analysis: 1-D MCA simulations of variability correlating IR and EF using Crystal Ball® 2000
(5,000 iterations, Latin Hypercube sampling).  Spearman rank correlations: 0.10, 0.50, 0.90

Statistics of PDFv for Intake (ug/day) compared to Fish Advisory of 7.0 ug/day

Rank Correlation (r) 0.10 0.50 0.90

Intake Statistics (ug/day)

mean 1.6 1.8 2.0

50th percentile 1.1 1.1 1.1

95th percentile 4.4 5.4 6.5

97.5th percentile 5.7 7.0 9.0

< For this example, only IR and EF are characterized by PDFs.  They contribute approximately equally to the
distribution of intakes.  Positive rank correlations have little effect on the median (50th percentile) of the
output distribution, but tend to widen the tails of the distribution.  Increasing the correlation from 0.10 to
0.90 increases the 90th percentile from 4.4 to 6.5 ug/day, and the 97.5th percentile from 5.7 to 9.0 ug/day.  

< If the fish advisory is 7.0 ug/day, uncertainty in the correlation coefficient may have important
consequences for the risk management decision.
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Correlations may also be specified for parameters of a probability distribution.  This is an
important concept when designing a two-dimensional Monte Carlo analysis (2-D MCA) in which
parameters of the same PDFv might be otherwise be described by independent PDFu’s.  A common
approach for correlating two parameters is to specify a bivariate normal distribution (Nelsen, 1986, 1987;
Brainard and Burmaster, 1992).  A bivariate normal distribution allows for the distribution of one variable
to be sampled conditional on the other.  This is a special case of a joint distribution in which both x and y
are random variables and normally distributed (as the conditional distribution of x or of y is always
normal) (Wonnacott and Wonnacott, 1981).  Example B-4 further explains bivariate normal distributions
and demonstrates this approach applied to coefficients of a simple linear regression model that relates
contaminant concentrations in soil and dust.

The results of correlation analysis should be interpreted with caution.  Two variables may be
associated due to: (1) a dependency between the two variables; (2) chance (two independent variables
appear dependent due to chance in the sampling procedure); and (3) variables not included in the analysis
(lurking variables) are affecting the two variables being analyzed.  Likewise, a low correlation measure
does not necessarily mean the two variables are independent.  As a lurking variable may cause the
appearance of an association between the two independent variables, it may also mask the association
between two dependent variables.

 L Correlation describes a degree of mathematical association, not a causal
relationship between the two variables.  

Efforts to extrapolate or predict correlations outside the range of observed values should also be
done with caution.  For example, there may be a strong linear relationship between age and height in
children; however, it would be inappropriate to apply this correlation to adults.  Additional caution is
needed when correlating more than two factors at a time.  In general, because of the complexity of
specifying a valid covariance matrix when correlating more than two factors at a time, risk assessors may
need to consult a statistician to avoid generating misleading risk estimates.

B.5.6 CENSORED DATA

In order to define the exposure point concentration, estimates of summary statistics representative
of the entire distribution of data are needed (Helsel and Hirsch, 1992).  Censored data complicate the
process of selecting and fitting PDFs and estimating parameter estimates.  A censored data set is a data set
for which measurements above or below a certain threshold are not available.  Left censored data occurs
frequently at Superfund sites, where samples for a number of chemicals are often below the reporting
limit.  A censored datum (often denoted by ND) commonly represents a value of half of the laboratory
reporting limit. 

Three general methods for estimating summary statistics for left censored data sets include:
(1) simple substitution; (2) distributional methods; and (3) robust methods (Helsel and Hirsch, 1992). 
These methods may be evaluated based on the root mean squared error (RMSE) estimate, a measure of 
the difference between the sample statistic (e.g., the sample mean, ) and the true population parameterx
(e.g., population mean, µ).  
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Methods which yield estimates closer to the true parameter value have lower bias, higher precision, and
lower RMSEs. 

Simple Substitution Methods

Simple substitution methods entail substituting values equal to or lower than the reporting limit in
the data set.  These surrogate values are then included in the calculation of the summary statistics and in
determining the distributional shape of the data set.  Although this method is frequently used, it is
important to understand its limitations; depending on the surrogate value used (e.g., half the reporting
limit) the simple substitution method may yield biased parameter estimates (e.g., low estimates of the
mean) and may yield misleading distributional shapes.  Studies such as those reported by Gilliom and
Helsel (1986) have determined, in terms of the RMSE, that simple substitution methods perform more
poorly than the distributional and robust methods described below. 

Distributional Methods

With distributional methods, the entire data set is assumed to follow a theoretical distribution
(e.g., normal distribution).  Assuming a theoretical distribution, MLE and probability plotting (p-plot)
methods provide summary statistics that best match the reported values of the data and the percentage of
samples below the threshold value.  If the data fit the theoretical distribution exactly, or if the sample size
is large, both MLE and p-plots are unbiased methods.  Often, however, the sample size is small and the
distribution deviates from a theoretical distribution.  In this case, the MLE and p-plot methods may yield
biased and imprecise methods (Hesel and Hirsch, 1992). 

Robust Methods

With robust methods, a theoretical distribution is needed.  A theoretical distribution is fit to the
data above the detection limit by MLE or p-plot methods.  Based on this assumed PDF, the value of the
data points below the detection limit are extrapolated and used in the summary statistics calculation.
Unlike the simple substitution method, these extrapolated values are not estimates for the data points;
rather, they are only used jointly to calculate summary statistics (Hesel and Hirsch, 1992).  The method is
considered robust as it uses the actual values of the sample data, rather than the distribution above the
detection limit. 

B.5.7 TRUNCATION

Truncation refers to imposing a minimum and/or maximum value on a probability distribution. 
The main purpose of truncation is to constrain the sample space to a set of “plausible values”.  For
example, a probability distribution for adult body weight might be truncated at a minimum value of 30 kg
and a maximum value of 180 kg in order to avoid the occasional selection of an unlikely value (e.g., 5 or
500 kg).  Given the subjectiveness involved in selecting truncation limits, such choices should clearly be
made with caution, and involvement of stakeholders who may be aware of site-specific circumstances. 
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For example, there may well be individuals who weigh more than 180 kg and less than 30 kg.  The
purpose for truncating the tails of a distribution is to confine each risk estimate of a Monte Carlo
simulation to a combination of plausible input values.  The advantage of truncating unbounded
probability distributions in PRA is that central tendency and high-end risk estimates will not be biased by
unrealistic values.  The disadvantage is that the original parameter estimates of the nontruncated
distribution are altered by constraining the sample space.  The bias in the parameter estimates increases as
the interval between the minimum and maximum truncation limit is reduced.  For example, a normal
distribution with an arithmetic mean of 100 may be fit to a data set; imposing a truncation limit of
300 may result in a truncated normal distribution with an arithmetic mean of 85.  The relationship
between the truncated and nontruncated parameter estimates can be determined analytically (Johnson et
al., 1995) or approximated using Monte Carlo simulations under both truncated and nontruncated
scenarios.

Table B-3.  Theoretical bounds and parameter values for selected distributions.

Probability Distribution Parameters1 Theoretical Bounds

Normal (:, F) (-4, + 4)

Lognormal (:, F) [0, + 4)

Weibull (", $) [0, + 4)

Exponential ($) [0, + 4)

Gamma (", $) [0, + 4)

Beta ("1, "2, a, b) [a, b]

Uniform (a, b) [a, b]

Triangular (a, m, b) [a, b]

Empirical ( bounded EDF) (a, b, {x}, {p}) [a, b]

1a=minimum, b=maximum, :=mean, F=standard deviation, m=mode, 
"=shape parameter, $=scale parameter, x=value, p=probability

Truncation is typically considered when using unbounded probability distributions (e.g., normal,
lognormal, gamma, Weibull) to characterize variability.  Table B-3 gives the theoretical bounds for
selected probability distributions that may be more commonly used in PRA.  Truncating the minimum
value may also be appropriate for distributions whose minimum is defined as zero (e.g., lognormal,
gamma, Weibull).  Truncation is generally less important when a PDF is used to characterize uncertainty
in a parameter estimate (e.g., arithmetic mean), since distributions for uncertainty are often bounded by
definition (e.g., triangular, uniform).  Bounded continuous distributions, such as the beta distribution or
empirical distribution (see Section B.5.2) are not subject to the parameter bias of truncation, although
plausible minimum and maximum values must still be identified. 

Identifying appropriate truncation limits that reflect “plausible bounds” for an exposure variable
will often require judgment.  Given that most data sets represent statistical samples of the target
population, it is unlikely that the minimum and maximum observed values represent the true minimum
and maximum values for the population.  However, there may be physiological or physical factors that
can aid in setting plausible truncation limits.  For example, the maximum bioavailability of chemicals in
the gastrointestinal (GI) tract is 100%.  Similarly, the solubility of chemicals in aquatic environments



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-31

H

Ha

0 1 2

1 2

:

:

µ µ

µ µ

=

≠

(accounting for effects of temperature) will generally be less than the chemical solubility in water free of
particulates.

In general, sensitivity analysis can be used to determine if truncation limits are an important
source of parameter uncertainty in risk estimates.  For exposure variables in the numerator of the risk
equation, the maximum truncation limit is of greatest concern.  For exposure variables in the denominator
of the risk equation, the minimum truncation limit is of greatest concern.  Details regarding the fit of the
tails of the probability distribution and the effect of truncation on the parameter estimates should
generally be included in the workplan.

B.6.0 ASSESSING QUALITY OF THE FIT

The quality of the fit of a distribution may be evaluated in several ways.  Standard statistical
approaches are available to test the fit of a theoretical distribution to a data set (i.e., GoF tests).  In
addition, alternative choices for distribution shapes and plausible bounds might be explored as a form of
sensitivity analysis.  Together with graphical exploration (Section B.5.3), this information may be useful
when deciding whether or not to incorporate a specific type of distribution for an exposure variable into a
PRA.  

L GoF tests are one tool among several to assess the quality of a distribution.

Although GoF testing is a necessary part of distribution fitting, and tests are readily available with
commercial software, it is less important than mechanistic considerations or graphical data exploration for
choosing a candidate distribution.  Examples of GoF tests are discussed below, and cautions regarding
GoF are outlined in Section B.6.3.

B.6.1 WHAT IS A GOODNESS-OF-FIT TEST?

Goodness-of-fit (GoF) tests are formal statistical tests of the hypothesis that the data represent an
independent sample from an assumed distribution.  These tests involve a comparison between the actual
data and the theoretical distribution under consideration. 

In statistical hypothesis testing the null hypothesis (H0) is assumed to be true unless it can be
proven otherwise.  The “evidence” upon which we base a decision to reject or not to reject H0 is a random
sample.  Typically, we seek to reject H0 in favor of Ha.  For example, with the two sample t-test, the null
hypothesis is that the means of two populations are equal (not different) and the alternative is that they are
different.  This is expressed as:  

Most often, the hypothesis test is used to show that the means are not equal (i.e., reject H0 in favor
of Ha) in order to state that there is a significant difference between the two populations at a specified
significance level (e.g., "=0.05).  Thus, the hypothesis test is often referred to as a significance test.

The p-value in a statistical test is calculated from a sample and represents the probability of
obtaining a value of the test statistic as extreme or more extreme as the one observed if H0 is in fact true. 
When the p-value is small it means either the null hypothesis is not true, or that we have witnessed an
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unusual or rare event (by chance we drew an unusual sample that resulted in the extreme value of the test
statistic).  Often a value of 0.05 or 0.01 is designated as a cutoff, or significance level ".  If the p-value is
(e.g., p < 0.05), the null hypothesis is rejected in favor of the alternative, and we state that the test result is
statistically significant at level ".  This does not mean that we have proven Ha is true.  Rather, we are
saying that based on our sample results, it is unlikely that H0 is true.  

In a GoF test, the hypothesis test is set up the same way as a “traditional” hypothesis test, but the
outcome is viewed a little differently.  In GoF tests, we generally seek to fail to reject H0 because the null
hypothesis states that the data were obtained from a population described by the specified distribution
(F0).  The alternative hypothesis is that the data were obtained from a population described by a different
distribution.  In most applications of GoF techniques, the alternative hypothesis is composite—it gives
little or no information on the distribution of the data, and simply states that H0 is false (d’Agostino and
Stephens, 1986).  This can be expressed as:

where F0 is a specific continuous distribution function, such as the CDF for a normal distribution.

L GoF tests do not prove that the population is described by the specified
distribution, but rather that this assumption could not be rejected.  

In general, p-values provide one metric of evaluating the fit of the distribution.  For example, a p-value of
0.06 indicates that the null hypothesis (i.e., the assumption of a specified distribution) cannot be rejected
at "=0.05.  Larger p-values indicate a better fit and stronger evidence that the distribution specified by the
null hypothesis may be appropriate.  This guidance does not recommend an arbitrary cutoff for the
p-value.  A risk assessor performing a GoF test generally should report the p-value and whether the fit is
considered “good” or “poor”.  

B.6.2 WHAT ARE SOME COMMON GOODNESS-OF-FIT TECHNIQUES?

The following GoF tests can also be found in most general statistical and spreadsheet software. 
Both Crystal Ball® and @Risk software present the results of chi-square, K-S, and Anderson-Darling tests
in their fitting routines. 

Shapiro-Wilk Test

The most widely used GoF test in risk assessment is the Shapiro-Wilk test for normality (Gilbert,
1987).  This simple hypothesis test can determine whether or not a small data set (n # 50) is normally
distributed.  The test can also be run on log-transformed data to assess whether the data are lognormally
distributed.  D'Agostino's test may be used for samples sizes larger than those accommodated by the
Shapiro-Wilk test (i.e., n > 50) (d’Agostino and Stephens, 1986).  In addition, Royston (1982) developed
an extension of the Shapiro-Wilk test for n as large as 2000 (Gilbert, 1987).  

Probability Plot Correlation Coefficient Test

The correlation coefficient r (or the coefficient of determination, r2) between the data and the
z-scores of a normal probability plot (Filliben, 1975; Helsel and Hirsch, 1992) is similar to the W statistic
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of the Shapiro-Wilk test.  A detailed comparison of the Shapiro-Wilk test and the product correlation
coefficient test is given by Filliben (1975) and d’Agostino and Stephens (1986).  Helsel and Hirsch
(1992) summarize critical r* values derived by Looney and Gulledge (1985) for the probability plot
correlation coefficient test.

Chi-Square Test

The chi-square test is a general test that may be used to test any distribution (continuous or
discrete), and for data that are ordinal (e.g., categories such as high/medium/low).  Chi-square is a
measure of the normalized difference between the square of the observed and expected frequencies.  For
example, by constructing a frequency distribution of the data with k adjacent bins, j=1...k, the number of
data points in the jth bin can be compared with the expected number of data points according to the
hypothesized distribution.  Note that in the case of continuous, unbounded distributions (e.g., normal), the
first and last intervals may include [- 4, a1] or [ak, + 4] (Law and Kelton, 1991).  The chi-square test is
very sensitive to the chosen number and interval width of bins—different conclusions can be reached
depending on how the intervals are specified.  Strategies for selecting bins (e.g., setting interval widths
such that there are no fewer than 5 data points expected per bin) are given in the statistical literature
(d’Agostino and Stephens, 1986; Law and Kelton, 1991).  The test statistic is compared with a value of
the chi-square distribution with (k - r - 1) degrees of freedom, where k is the number of sample values and
r is the number of parameters of the hypothesized distribution.  As described in Section B.6.1, in general,
higher p-values suggest better fits.

Kolmogorov-Smirnov (K-S) Test

The K-S test is a nonparametric test that compares the maximum absolute difference between the
step-wise empirical CDF and the theoretical CDF.  Because the maximum discrepancy is compared with
the test statistic, K-S is sometimes referred to as a supremum test (Cullen and Frey, 1999).  In general,
lower values of the test statistic indicate a closer fit.  The K-S test is most sensitive around the median of
a distribution, and, hence, it is of little use for regulatory purposes when the tails of distributions are most
generally of concern (U. S. EPA, 1999a).  Although it does not require grouping data into bins like the
chi-square test, critical values for the K-S test depend on whether or not the parameters of the
hypothesized distribution are estimated from the data set (Gilbert, 1987; Law and Kelton, 1991).  The
Lilliefors test was developed to surmount this problem when the hypothesized distribution is normal or
lognormal (Gilbert, 1987).

Anderson Darling Test

The Anderson-Darling test assesses GoF in the tails (rather than the mid-ranges) of a PDF using a
weighted average of the squared differences between the observed cumulative densities.  The Anderson-
Darling test is sometimes referred to as the quadratic test (Cullen and Frey, 1999).  The test statistic
should be modified based on sample size prior to comparison with the critical value.  Like the K-S test, in
general, lower values of the test statistic indicate a closer fit (i.e., if the adjusted test statistic is greater
than the modified critical value for a specified ", the hypothesized distribution is rejected).  The
Anderson-Darling test may be particularly useful because it places more emphasis on fitting the tails of
the distribution.
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B.6.3 CAUTIONS REGARDING GOODNESS-OF-FIT TESTS

There are many statistical software programs that will run GoF tests against a long list of
candidate distributions.  It is tempting to use the computer to make the choice of distribution based on a
test statistic.  However, GoF tests have low statistical power and often provide acceptable fits to multiple
distributions.  Thus, GoF tests are better used for rejecting poorly fitting distributions than for ranking
good fits.  In addition, for many distributions, GoF statistics lack critical values when the parameters are
unknown (i.e., estimated from the data).  In practice, this limitation is often discounted and the critical
values are interpreted as a semi-quantitative measure of the fit.  It is most appropriate to form an idea of
the candidate distributions based on some well reasoned assumptions about the nature of the process that
led to the distribution, and then to apply a GoF test to ascertain the fit (U.S. EPA, 1999a).  Whenever
possible, mechanistic and process (i.e., phenomenologic) considerations should inform the risk assessor's
choice of a particular distribution rather than the results of a comparison of GoF tests (Ott, 1995).  In
addition, the value of graphical evaluations of the fit cannot be overstated.

B.6.4 ACCURACY OF THE TAILS OF THE DISTRIBUTION

The tails of a distribution (e.g., < 5th and > 95th percentiles) for an input variable are often of
greatest interest when characterizing variability in risk.  Distributions fit to data may not characterize the
tails of the distribution in a way that represents the target population.  In general, the importance of
uncertainty in the fit of the tails of particular distributions should be determined on a site-specific basis. 
For exposure variables in the numerator of the risk equation, the upper tail is of greatest concern.  For
exposure variables in the denominator of the risk equation, the lower tail is of greatest concern.  

The tails of the input PDFs generally have a significant influence on the tails of the risk
distribution, especially for those variables that are ranked highest in a sensitivity analysis.  Different
distributions may share the same mean and variance, but assume very different shapes.  Experiments with
Monte Carlo simulations have demonstrated that the shape of the input PDFs may have a minimal effect
on the risk estimates in the tails of the probability distribution when the mean and variance of the input
PDFs are held constant (Hoffman and Hammonds, 1992; Finley and Paustenbach, 1994).  Nevertheless, it
is generally a good practice in PRA to demonstrate that alternative choices of PDFs do not have a
significant effect on percentiles in the RME risk range.

A common question when developing and evaluating Monte Carlo models is, “How many
iterations is enough?”.  Since Monte Carlo sampling is approximately random, no two simulations will
yield the same results (unless the same starting point, or seed, of the random number generator is used). 
A rule of thumb is that the stability of the output distribution improves with increasing numbers of
iterations, although there will always remain some stochastic variability.  The stability is generally better
at the central tendency region of the output distribution than at the tails; therefore, more iterations may be
needed when the risk management decision is associated with the higher percentiles
(e.g., > 95th percentile).  Risk assessors are encouraged to run multiple simulations (with the same inputs)
using different numbers of iterations in order to evaluate the stability of the risk estimate of concern.  The
results of such an exercise should generally be reported to the Agency when submitting a PRA for review. 
Note that while the speed of modern computers has essentially eliminated the issue for 1-D MCA (e.g.,
10,000 iterations of most 1-D MCA models can be run in less than 1 minute), it may still be an important
issue for more complex modeling approaches such as Microexposure Event analysis (MEE) and
2-D MCA (see Appendix D).



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-35

B.7.0 SELECTING PROBABILITY DISTRIBUTIONS BASED ON STATE OF KNOWLEDGE

Table B-4 summarizes preliminary strategies for proceeding with a PRA based on the amount of
available information.  Recommended starting points for each of the three steps in the general process are
provided.  This table provides guidance on candidate distributions that are consistent with the available
information, however, it is not intended to discourage the use or exploration of alternative choices.

L Table B-4 provides recommended preliminary strategies, not steadfast rules. 
As an analyst works through the PRA, alternative distributions, estimation
methods, consideration of mechanism, and GoF tests may better guide the
selection process.  

Case 1 represents the best scenario, in which the analyst has access to the raw data and a
sufficiently large sample size (or > 6 percentiles).  In this case, the analyst has a variety of choices for
distribution fitting and estimating parameters.  However, frequently raw data are inaccessible to the
analyst.  Cases 2 and 3 have limited information available (i.e., mean and upper percentile) and, therefore, 
have a narrower set of starting points.  Case 4 is the most extreme scenario of data availability requiring
expert judgment on selecting and fitting distributions.
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Table B-4.  Strategies for conducting PRA based on available information.  Preferred methods in Case 1 (most
information) are identified by an asterisk (*).

Evaluation Step Case 1 Case 2 Case 3 Case 4

                                  Decreasing Information

Data
Availability

raw data of sufficiently
large sample size
                 or
six or more percentiles

three to five statistics two statistics one statistic

Selection of
Distribution Type

Nonnegative Continuous
any in this category

Bounded
beta, Johnson’s SB

Nonnegative Continuous
lognormal, gamma, Weibull

Bounded
beta, Johnson’s SB

case-by-case
basis using
expert judgment

Selection of
Parameter
Estimation /
Fitting Method

maximum likelihood*
regression methods
matching moments

minimize average
absolute percent error
(MAAPE) for 
available statistics

exact agreement
between 2-parameter
PDF and available
statistics

Assessment of 
Quality of Fit

Graphical Assessment
   P-log Q plot*, P-Q plot*

residual % error plot*
P-P plot, Q-Q plot 

GoF Tests
Anderson-Darling*
K-S
Chi-square

Graphical Assessment
P-log Q plot, P-Q plot

GoF Test
Chi-square,

   Estimate p-value for      
   MAAPE using 
   parametric bootstrap (if 
   sample size is known)

Graphical Assessment
judgment based on
comparative analysis of
PDFs and CDFs

Estimation of
Parameter
Uncertainty

Large Sample
asymptotic normality 

   assumption
Medium Sample

nonparametric bootstrap 
Small Sample

parametric bootstrap

Parametric bootstrap
generate random samples using the fitted distribution
(if sample size is known)
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EXAMPLES OF FITTING DISTRIBUTIONS USING 
GRAPHICAL METHODS, GOODNESS-OF-FIT, AND PARAMETER ESTIMATION

Example B-1.  Empirical Distribution Function (EDF) for Soil Ingestion Rates

This hypothetical example illustrates how graphical methods can be used to select probability
distributions for variability based on percentile data reported in the literature.  Table B-5 gives the
summary statistics that are reported by Stanek and Calabrese (1995) for average daily soil ingestion rates
among young children.  Three options are explored for selecting a distribution: (1) empirical distribution
function (EDF) represented by a step function; (2) linearized and extended EDF; and (3) continuous
parametric distributions (beta and lognormal).

In order to specify an EDF, a plausible range (minimum and maximum) must be inferred using
judgment.  Exposure factors such as ingestion rate are nonnegative variables (i.e., minimum $0); given
the relatively low value for the 25th percentile (10 mg/day), it is assumed that 0 mg/day is a reasonable
minimum value for this example.  If children with pica for soil are excluded from the population of
concern, the maximum value may be inferred from the relatively shallow slope at the high-end of the
distribution.  That is, the 90th percentile is reported as 186 mg/day while the 99th percentile is 225 mg/day,
an increase of only 39 mg/day; it is assumed that 300 mg/day is a plausible maximum value for this
example.  Commercial software such as Crystal Ball® and @Risk can be used to input EDFs.  Figure B-3
illustrates the basic step-wise EDF represented by the reported percentile values, as well as the
“linearized, extended EDF” (i.e., linear interpolation between reported values and extended lower and
upper tails).  

An alternative to relying on a linear interpolation between the percentile values is to fit a
continuous probability distribution to the reported percentiles.  Since the original data are unavailable,
standard GoF tests for the EDF, such as K-S and Anderson-Darling (d’Agostino and Stephens, 1986),
cannot be applied.  Note that computer software (e.g., Crystal Ball®, @Risk) will provide test statistics
and corresponding p-values, however, these results will (inappropriately) reflect the number of percentile
values reported rather than the sample size of the original data.  Nevertheless, graphical methods may be
employed to assess the adequacy of the fit of various PDFs.  In this example, a beta distribution and
lognormal distribution were fit to the EDF using Crystal Ball®.  Figure B-4 illustrates the selected
statistics for both distributions.  

The beta distribution appears to more closely match the reported percentile values, especially at
the upper tail of the distribution.  The lognormal distribution has an unbounded maximum that, for this
example, results in an extreme overestimate of the 95th and 99th percentiles.  The beta distribution, by
definition, is bounded at 0 and 1, and rescaled in this example to a maximum of 364 mg/day.  This
analysis would support the use of a beta distribution in a Monte Carlo simulation.
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Figure B-3.  Comparison of step-wise EDF and linearized EDF for ingestion rate.  The upper and lower tails of both
distributions are extended to a plausible range of [0, 300] mg/day.

Table B-5.  Selected statistics for reported and fitted distributions for ingestion rate (mg/day).
Summary
Statistic

Reported
Values

Linearized,
Extended EDF

Beta
Distribution1

Lognormal
Distribution2

minimum -- 0 0 0
25th percentile 10 10 13 11
50th percentile 45 45 44 31
75th percentile 88 88 100 86
90th percentile 186 186 165 216
95th percentile 208 208 205 375
99th percentile 225 225 322 3346

maximum -- 300 364 + 4

1Parameters of best-fit beta distribution: "1=0.63, "2=2.85, min=0, max=364.
2Parameters of best-fit lognormal distribution: :=97.6, F=291.8.
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Figure B-4.  Graphical assessment of beta and lognormal distributions fit to the cumulative
distribution reported in the literature (circles).  The beta distribution provides a closer fit to the
percentile values in this example.

.
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Example B-2.  Variability in Lead Concentrations in Quail Breast Tissue

This hypothetical example demonstrates how the combination of graphical methods, GoF tests,
and parameter estimation techniques provides strong evidence for selecting and fitting a lognormal
distribution.  Assume lead concentration in quail is an important variable for a food web model.  Site-
specific data (n=62) are used to estimate inter-individual variability in concentration (Table B-6).  The
histograms in Figure B-5 show lead concentrations in quail breast tissue collected near a settling pond at a
plating works.  Equation B-1 indicated that 7 bins is an appropriate starting point.  The result (top left
panel, Figure B-5) suggests that approximately 80% of the values are < 200 ppm and that the probability
distribution for variability may be described by a nonnegative, right-skewed distribution (e.g.,
exponential, Weibull, lognormal, etc.).  However, additional bins are needed to better understand the low-
end of the distribution.  After increasing the number of bins from 7 to 16 (top right panel, Figure B-5),
graphical evaluation continues to suggest that the distribution is unimodal right skewed.  The bottom
panel of Figure B-5 illustrates that increasing the number of bins would not provide better resolution of
the low-end of the distribution.  For these data, 16 bins appear to provide a reasonable balance between
too much smoothing and too much jaggedness.

Probability plots can be used to visually inspect the GoF of a specified distribution to the data,
and, because the hypothesized distribution yields a straight line, the plots are particularly useful for
evaluating deviations at the tails.  In addition, parameter estimates can be obtained from the regression
lines fit to the data, as discussed below.  For this example, two lognormal probability plots are explored to
evaluate how well the data can be described by a lognormal distribution (Figure B-6).  The top panel
gives the z-score on the abscissa (the “x” axis) and ln[concentration] on the ordinate (the “y” axis), while
the bottom panel gives ln[concentration] on the abscissa and z-score on the ordinate.  Plotting positions
for both methods were calculated using Equation B-2.  Equally plausible parameter estimates can be
obtained from regression lines using either plotting method; however, the approach shown in the top
panel may be easier to implement and interpret.

Despite the relatively large sample size of n=62, GoF tests generally fail to reject lognormality
(i.e., normality of the log-transformed data) in this example.  For the probability plot correlation
coefficient test (Filliben, 1975; Looney and Gulledge, 1985), if r < r* (the value for r at a specified "),
normality is rejected.  For this example, r is 0.988, and r* is between 0.988 and 0.989 for n=62 and
"=0.25; therefore, the p-value for the concentrations is approximately 0.25 and one fails to reject
lognormality at " # 0.25.  D’Agostino’s test yields essentially the same conclusion, with a calculated
Y value of -1.9166.  For this data set, with n=62 and "=0.10, one rejects normality if Y < -2.17 or
Y > 0.997 (see Table 9.7 in d’Agostino and Stephens, 1986); therefore, since Y is within this interval, one
fails to reject the normal distribution.  However, for "=0.20, the rejection criteria is [Y < -1.64 or
Y > 0.812], Y falls outside the low-end of the interval, resulting in a rejection of the normal distribution. 
For this data set, the p-value associated with d’Agostino’s test is slightly less than 0.20 and one fails to
reject normality at  " < 0.20.
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Table B-6.  Sample values of lead concentration (ppm) in quail breast muscle (n=62).
0.45 15.8 36.6 57 91 173 265

2.1 16 40 59.6 94.2 175.6 322
5.4 16.7 40.1 61.4 99 176 490
7.8 21 42.8 62 107 177 663.4
7.8 23 44 64 109 205 703
8.8 24 46 64 111 239 1231

11.8 24.8 47 84.6 149 241 1609
12 29.2 49 86.6 149 245 1634
15 35.5 53 86.8 154 264

Figure B-5.  Histograms of lead concentrations in quail breast muscle (n=62).  The top left panel shows the result
with seven bins; the top right panel shows the result with sixteen bins; the bottom panel uses bin widths of 10
ppm to highlight the lower tail (< 250 ppm) of the distribution.
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Different methods for obtaining the parameter estimates for the lognormal distribution can be
explored in this example.  For the lognormal distribution, MLE and MoMM simply require calculating
the mean and standard deviation of the log-transformed sample data.  For the lognormal probability plot
method, the parameters can be obtained directly from the least squares regression line expressed as
follows:

such that exponentiating the intercept will give the geometric mean (GM) and exponentiating the slope
will give the geometric standard deviation (GSD) (see Footnote 3 of Table B-7).  Both the MLE and
MoMM estimates will generally match the arithmetic mean of the log-transformed data (i.e., intercept)
determined from lognormal probability plots; however, estimates of the standard deviation (i.e., slope)
will vary (Cullen and Frey, 1999).  In general, the probability plot method yields estimates of the standard
deviation that are less than or equal to that of MoMM and MLE, and the results yield closer estimates as
the correlation coefficient of the probability plot increases (Cullen and Frey, 1999).  Table B-7
summarizes the parameter estimates using MLE, MoMM, and the two lognormal probability plotting
techniques described above.  The corresponding parameter estimates for the untransformed data are also
presented.  

In this example, the strong linearity of the probability plots (r2=0.98) shown in Figure B-6 is an
indication that a lognormal distribution is a reasonable model for describing variability in concentrations. 
The tails of the distributions fit the data fairly well, although the bottom panel suggests that the lognormal
distribution slightly overestimates the lower tail.  Furthermore, the parameter estimates of the lognormal
distribution using probability plotting closely match the estimates using MLE and MoMM.

Table B-7.  Parameter estimates for lognormal distribution of lead concentrations (ppm).

Parameter Estimation
Method

Log-transformed
Data

Untransformed
Data3

Arithmetic
mean [ ]$µ

Arithmetic
stdev [ ]$σ

Arithmetic
mean [ ]$µ

Arithmetic
stdev [ ]$σ

Maximum Likelihood
Estimate (MLE) 4.175 1.522 207 626

Method of Matching
Moments (MoMM) 4.175 1.522 207 626

Log Probability Plot1 4.175 1.507 203 597
Log Probability Plot2 4.175 1.543 214 670

1Least squares regression line for Figure B-6, top panel.
2Least squares regression line for Figure B-6, bottom panel.
3For a lognormal distribution, the following equations can be used to convert parameters of the normal distribution of
log-transformed data to corresponding parameters of the lognormal distribution of untransformed data.  Assume :* and
F* are the arithmetic mean and standard deviation, respectively, for the normal distribution of log-transformed data.
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Figure B-6.  Lognormal probability plots of lead in quail breast tissue.  Top panel gives z on the abscissa and
ln[concentration] on the ordinate.  Bottom panel gives concentration (log scale) on the abscissa and z on the
ordinate.  Equally plausible parameter estimates can be obtained from regression lines using either plotting
method.  Bottom panel requires an additional step to express the equation that yields parameter estimates
[ln(x)=(slope) z + (y-intercept)], where the slope estimates the standard deviation of ln(x) and the y-intercept
(at z=0) estimates the arithmetic mean of ln(x). 
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Example B-3.  Variability in Meal Sizes Among Consuming Anglers

A creel survey of anglers consuming contaminated fish was performed to estimate variability in
fish meal sizes.  The anglers were asked how many people would eat their fish.  The lengths of the fish
were measured and a regression equation was used to calculate the corresponding weights.  The portion of
the fish mass that is consumed was assumed to be 40% (e.g., fillets).  Results given in Table B-8 are
expressed in units of grams of fish per meal.

The appearance of the histograms (Figure B-7)
suggests that the sample (n=52) may have been selected from
a single distribution.

A normal probability plot of the meal sizes
(Figure B-8) shows a departure from linearity.  Specifically,
there appears to be a “kink” in the probability plot at about
400 g/meal, suggesting that the sample may have been
obtained from two unique distributions.  Both the Filliben 
test and Shapiro-Wilk test indicated a significant departure
from normality at "=0.01.  Parameters may be read directly
from the equations of the regression lines on the right hand
panel of the graph.  MoMM and MLE gave similar estimates.

Figure B-7.  Histograms of meal size (n=52) among consuming anglers.  Left panel uses 7 bins, while the right
panel uses 14 bins.

Table B-8.  Meal size (g/meal) (n=52).
65 182 310 405
74 208 314 415
74 221 318 416
77 226 318 477
90 241 327 531

110 248 332 572
111 253 336 608
133 260 337 745
143 261 350 831
150 281 351 907
163 303 360 1053
163 305 365 1189
174 305 390 1208
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Example B-4.  Bivariate Normal Distributions

This example introduces the bivariate normal
distribution to illustrate two concepts: (1) use of
information on correlations in a Monte Carlo
simulation; and (2) specifying distributions for
uncertainty in parameter estimates.  A brief
explanation of the bivariate distribution is presented
followed by an example comparing assumptions of
no correlation and perfect correlation.  A less
complex example of a method for addressing
correlations in PRA is given in Exhibit B-8.

Properties of a Bivariate Normal Distribution

One approach that can be used to correlate
two random variables is to specify a bivariate normal distribution, which allows for the distribution of one
variable to be sampled conditional on the other.  A bivariate normal distribution is a special case of a joint
distribution in which both x and y are random independent normally distributed variables.  A bivariate
normal distribution can be specified for all correlation coefficients including ρ=0, ρ=1, and ρ=−1.  The
bivariate distribution has a three dimensional shape and for ρ=0, from a bird’s-eye view, is perfectly
circular.  As correlation increases (i.e. moves towards -1 or 1) this circle narrows and flattens to an
elliptical shape, and finally for perfect correlation →=1 and ρ=-1) becomes a straight regression line with
a r2=1.  In three dimensional space the probability of obtaining measurement pairs (x, y) in the region is
equal to the volume under the surface in that region.  To completely specify the bivariate normal,
estimates of the arithmetic mean and variance of the two parameters, as well as the correlation coefficient
(:X and :Y, variances F2

X and F2
Y , and correlation coefficient D) are needed.

Figure B-8.  Probability plot of meal size data from consuming anglers.  The left panel shows the combined
data, with a departure from linearity at ~ 400 g/meal.  The right panel shows the data split between high
consumers (top line) and low consumers (bottom line); note that separate lognormal probability plots were
reconstructed for both subsets of the data.  The point at which to “split” the distribution in the left panel is
somewhat subjective.  The break would be more obvious if the two distributions did not overlap.

THIS EXAMPLE PRESENTS...

• Description of the assumptions associated
with the bivariate normal distribution

• Guidance on simulating the bivariate normal
distribution for two random variables

• Application of bivariate normal to a simple
linear regression equation relating
contaminant concentrations in soil and dust
(see Figure B-9).  Results are compared to
the assumption of no correlation and perfect
correlation
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X ZX X= + ×µ σ 1 Equation B-8

Y ZY Y= + ×µ σ 2 Equation B-9

In a bivariate normal distribution, values of y corresponding to each value of x follow a normal
distribution (Snedecor and Cochran, 1989).  Analogously, the values of x corresponding to each value of
y follow a normal distribution.  Furthermore, if two random variables, X and Y, jointly follow a bivariate
normal distribution, the marginal distribution of X is normal with mean :X and variance F2

X, and the
marginal distribution of Y is normal with mean :Y and variance F2

Y.

Conditional Distributions

Assume we are interested in the conditional distribution of X given a certain value for Y.  For
example, if X and Y are positively correlated, we would expect that relatively high values of X tend to
correspond with relatively high values of Y.  The conditional distribution of X given that Y=y, where y
represents a specific value for the random variable Y, is a normal distribution with:

Likewise, the conditional distribution of Y given that X=x, is also normal with:

These general equations can be used to generate a correlated pair (X, Y), as described below. 

*Note that the mean of the conditional distribution of X is a function of the given value of Y but the
variance depends only on the degree of correlation.  

General Approach for Correlating X and Y

To generate a correlated pair (X, Y), first generate X using a random value Z1 from the standard
normal distribution:

Next, express Y as a function of the conditional mean and variance of Y given X and a second standard
normal variate Z2:
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21 Equation B-10

and generate a correlated Y by plugging Equation B-7 into Equation B-9.  Using algebra, the combined
equations yield the following simplified expression for generating Y:

The important component of this equation is that two
random variates are needed (Z1 and Z2).

An alternative, but less general approach
would be to obtain Y by first generating a normal
variate X (Equation B-8) and then plugging that
value into the regression equation of Y on X to obtain
the associated value of Y.  While this method
maintains a correlation between X and Y, it will
underestimate parameter uncertainty.  The results are
equal only for the special case of perfect correlation
(D=1.0) between X and Y.  Therefore, the more
general bivariate normal distribution approach (given
by Equations B-8 to B-10) is recommended for
correctly correlating X and Y because it provides a
more robust estimate of parameter uncertainty.

Application of Bivariate Normal Distribution to
Correlate Concentrations of Zinc in Soil and Dust

Assume random sampling of soil and dust
zinc concentrations occurs in a residential area.  Composite samples of soil and dust are collected from
21 locations such that samples are paired (i.e., each soil sample is co-located with a dust sample) (Table
B-9).  First the relationship between the zinc concentration in soil and dust is evaluated using simple
least-squares regression.  Next, the bivariate normal distribution for the slope ($1) and intercept ($0) is
determined, yielding an arithmetic mean and standard deviation for each parameter (:b0, F2

b0, :b1, and
F2

b1), and correlation coefficient D between $1 and $0.  In this context, the bivariate normal distribution
may be considered a distribution for uncertainty in the parameter estimates.

Three simulation methods are employed to demonstrate the effect of assuming a bivariate normal
distribution for parameters vs. perfect correlation, or independent parameters.  Specifically:

(1) The slope and intercept of the regression line are described by a specific form of the bivariate
normal distribution (i.e., follow Steps 1, 2 in Exhibit B-9, and use Equation B-10 instead of
Step 4).

(2) The slope and intercept of the regression line are described by a general form of the bivariate
normal distribution (i.e., follow Steps 1 to 4 in Exhibit B-9).

(3) The slope and intercept of the regression line are described by independent normal distributions
(i.e., follow Steps 1–4 in Exhibit B-9, but omit the correlation coefficient D in Steps 2 and 4).
For each approach, Monte Carlo simulations with I=5,000 iterations were run to determine the set

EXHIBIT B-9

STEPS FOR SIMULATING UNCERTAINTY IN
LINEAR REGRESSION EQUATION USING A
BIVARIATE NORMAL DISTRIBUTION TO

CORRELATE PARAMETERS (#0, #1)

(1) Select Z1 from a standard normal distribution
Z~ N(0, 1)

(2) Calculate $0 using Equation B-8, where X=$0,
:x=:b0, and F2

x=F2
b0

(3) Select Z2 from a standard normal distribution
Z~ N(0, 1)

(4) Calculate $1 using Equation B-10, where
Y=$1, :y=:b1, F2

y=F2
b1, D=correlation between

$0 and $1
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of parameter values ($0, $1) for a simple linear regression equation.  Typically, the uncertainty in the
parameter estimates is not accounted for when simple linear regression equations are used to relate to
exposure variables in a model.  Such an approach may fail to account for important sources of parameter
uncertainty.  Figure B-10 (middle panel) illustrates the preferred approach for characterizing parameter
uncertainty based on the bivariate normal distribution. (Note that the correlation coefficient relating the
intercepts and slopes generated from the simulation is consistent with the correlation coefficient that
describes the bivariate normal distribution; this is a good check that the simulation was set up correctly
and run for a sufficient number of iterations). These results are contrasted with results using a form of the
bivariate normal (Equation B-10) that underestimates uncertainty (top panel) unless parameters are
perfectly correlated.  In addition, the simplistic approach of sampling from independent normal
distributions (bottom panel), yields a “shot gun” scatter plot.  Sampling from independent normal
distributions results in unlikely extreme combinations of the slope and intercept more often than the
correct bivariate normal approach; propagating this bias through a risk model may severely bias estimates
of uncertainty in risk. 

Bivariate Normal
Distribution for

Parameters of the
Regression Equation 

B0 mean 173.9

variance 4162.2

B1 mean 0.193

variance 0.0063

s2 27857.4

Cov (B0, B1) -4.2428

r -0.8254

Figure B-9.  Simple linear regression of zinc concentrations in soil
and dust.

Table B-9.  Zinc concentrations in paired (i.e., co-located) soil and dust samples
(ppm) for n=21 locations.
Sample Soil (Xi) Dust (Yi) Sample Soil (Xi) Dust (Yi)

1 120 216 12 560 200
2 190 149 13 560 256
3 270 83 14 720 496
4 285 508 15 800 239
5 310 215 16 880 203
6 340 219 17 910 757
7 350 203 18 1035 676
8 380 101 19 1445 426
9 440 178 20 1600 522

10 480 232 21 1800 276
11 560 199
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Figure B-10.  Results of Monte Carlo simulation
(n=5000 iterations) to estimate the slope and intercept of a
regression equation.  Top panel reflects the bivariate normal
distribution for the special case that fails to capture the
parameter uncertainty; middle panel reflects the preferred
bivariate normal distribution with D=-0.825 based on
empirical paired data; bottom panel reflects sampling from
independent normal distributions.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-50

REFERENCES FOR APPENDIX B

Brainard, J. and D.E. Burmaster. 1992. Bivariate Distributions for Height and Weight of Men and Women
in the United States. Risk Anal 12(2):267–275.  

Brately, P., B.L. Fox, and L.E. Schrage. 1987. A Guide to Simulation. Springer-Verlag, NY.

Burger, J., W. L. Stephens, Jr., C. S. Boring, M. Kuklinski, J.W. Gibbons, and M. Gochfeld. 1999. 
Factors in Exposure Assessment: Ethnic and Socioeconomic Differences in Fishing and
Consumption of Fish Caught along the Savannah River. Risk Anal. 19(3):427–438.

Calabrese, E.J., Stanek, E.J., and Barnes R. 1996. Methodology to Estimate the Amount and Particle Size
of Soil Ingested by Children: Implications for Exposure Assessment at Waste Sites. Regul.
Toxicol. Pharmacol. 24:264–268.

Charney, E., J. Sayre, and M. Coulter.  1980. Increased Lead Absorption in Inner City Children: Where
Does the Lead Come From? Pediatrics 65:226–231.

Conover, W.J. 1980. Practical Nonparametric Statistics. John Wiley & Sons, NY.

Cullen, A.C. and H.C. Frey. 1999. Probabilistic Techniques in Exposure Assessment. A Handbook for
Dealing with Variability and Uncertainty in Models and Inputs. Plenum Press.

d’Agostino, R.B. and M.A. Stephens. 1986. Goodness-of-fit techniques. Marcel Dekker, Inc, NY.

Filliben, J.J. 1975. The Probability Plot Correlation Coefficient Test for Normality. Technometrics 
17(1):111–117.

Finley, B.L. and D.J. Paustenbach. 1994. The Benefits of Probabilistic Exposure Assessment: Three Case
Studies Involving Contaminated Air, Water and Soil. Risk Anal 14(1):53–73.

Gilbert, R.O.  1987.  Statistical Methods for Environmental Pollution Monitoring. Van Hostrand
Reinhold, NY.

Gilliom, R.J. D.R. Helsel. 1986. Estimation of Distributional Parameters for Censored Trace Level Water
Quality Data, 1. Estimation Techniques. Water Resources Research. 22:135–146..

Hahn, G.J. and S.S. Shapiro.  1967.  Statistical Models in Engineering. John Wiley & Sons,  NY.

Helsel, D.R. and R.M. Hirsch.  1992.  Statistical Methods in Water Resources. Elsevier. Amsterdam.

Hoffman, F.O. and J.S. Hammonds. 1992. An Introductory Guide to Uncertainty Analysis in
Environmental and Health Risk Assessment. ES/ER/TM–35. Martin Marietta.

Hora, S.C. 1992. Acquisition of Expert Judgment: Examples From Risk Assessment. J. Energy Eng.
118(2):136–148.

Johnson, N.L., S. Kotz, and N. Balakrishnan. 1995. Continuous Univariate Distributions. Volume 2,
Second Ed. John Wiley & Sons, NY.

Law, A.M. and W.D. Kelton. 1991. Simulation Modeling and Analysis. McGraw-Hill, NY.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-51

Looney, S.W. and T.R. Gulledge. 1985. Use of the Correlation Coefficient with Normal Probability Plots.
American Statist. 39:297–303.

Mendenhall, W. and R.L. Scheaffer. 1973. Mathematical Statistics with Applications. Duxbury Press.

Mood, A.M. and F.A. Graybill. 1963. Introduction to the Theory of Statistics. Second Edition. McGraw-
Hill, Inc.

Morgan, G.M. and M. Henrion. 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative
Risk and Policy Analysis. Cambridge University Press, NY.

Nelsen, R.B. 1986. Properties of a One-Parameter Family of Bivariate Distributions with Specified
Marginals. Comm. Stat. (Theory and Methods) 15:3277–3285.

Nelsen, R.B. 1987. Discrete Bivariate Distributions with Given Marginals and Correlation. Comm. Stat.
(Simulation and Computation) B16:199–208.

Oregon DEQ. 1998. Guidance for the Use of Probabilistic Analysis in Human Health Exposure
Assessments. Waste Management and Cleanup Division. Interim Final. November. 

Ott, W.R. 1990. A Physical Explanation of the Lognormality of Pollutant Concentrations. J. Air Waste
Manage Assoc. 40(10):1378–1383.

Ott, W.R. 1995. Environmental Statistics and Data Analysis. CRC Press, Boca Raton.

Palisade Corporation. 1994. Risk Analysis and Simulation Add-In for Microsoft Excel or Lotus 1-2-3. 
Windows Version Release 3.0 User’s Guide, Palisade Corporation, Newfield, NY.

Roseberry, A.M. and D.E. Burmaster. 1992. Lognormal Distributions for Water Intake by Children and
Adults. Risk Anal. 12(1):99–104.

Royston, J.P. 1982. An Extension of Shapiro and Wilk’s W test for Normality to Large Samples. Appl.
Stat. 31:115–124.

Snedecor, G.W. and W.G. Cochran. 1989. Statistical Methods. Eighth Edition. Iowa State University
Press, Iowa.

Stanek, E.J. and Calabrese, E.J. 1995. Daily Estimates of Soil Ingestion in Children. Environ. Health
Perspect. 103:176–285.

Thompson, K. 1999. Developing Univariate Distributions from Data for Risk Analysis. Hum. Eco. Risk
Assess. 5(4):755–783.

Tukey, J.W. 1977. Exploratory Data Analysis. Addison-Wesley, Boston.

U.S. EPA. 1982. Air Quality Criteria for Particulate Matter and Sulfur Oxides. ECAO, ORD. EPA
600/8–82-029.

U.S. EPA. 1992. Guidance for Data Useability in Risk Assessment, Part A. Office of Emergency and
Remedial Response, Washington, DC. OSWER Directive No. 9285.7-09A.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-52

U.S. EPA. 1994. Guidance for Conducting External Peer Review of Environmental Regulatory Models. 
Office of the Administrator, Washington, DC. EPA/100/B-94-001. July.

U.S. EPA. 1997a. Exposure Factors Handbook. Office of Research and Development, Washington, DC. 
EPA/600/P-95/002Fa, Fb, and Fc.

U.S. EPA. 1997b. Use of Probabilistic Techniques (Including Monte Carlo Analysis) in Risk Assessment,
Memorandum from Deputy Administrator Hansen and Guiding Principles for Monte Carlo
Analysis. EPA/630/R-97-001.

U.S. EPA. 1999a. Report of the Workshop on Selecting Input Distributions for Probabilistic Assessments. 
Risk Assessment Forum.  EPA/630/R-98/004. January.

U.S. EPA. 1999b. Options for Development of Parametric Probability Distributions for Exposure
Factors. Office of Research and Development. Research Triangle Institute Final Report. April 6.

U.S. EPA. 2001. Development and Evaluation of Probability Density Functions for a Set of Human
Exposure Factors. Office of Emergency and Remedial Response. University of California Draft
Report.  May.

Vose, D.  1996.  Quantitative Risk Analysis: A Guide to Monte Carlo Modeling. John Wiley & Sons, 
NY.

Wonnacott and Wonnacott. 1981. Regression: A Second Course in Statistics. John Wiley & Sons, NY.


